PPTOK首页PPT模板下载PPT背景PPT课件

您当前所在位置:首页 > 文库 > 教案 > 说课稿一等奖 → 数学七年级下册说课稿一等奖 平行线

数学七年级下册说课稿一等奖 平行线

时间:2022-09-21 21:32:06

数学七年级下册说课稿一等奖 平行线

数学七年级下册说课稿一等奖 平行线

1、数学七年级下册说课稿 平行线

今天我说课的内容是《平行线》,这节课所选用的教材为人教版七年级下册。接下来我将从教材、学情分析,目标分析等六个方面来进行我的说课。

1、教材分析:本课时是第五章第二节的第一课时,平面内两条直线的位置关系是研究“空间与图形”的基本问题。这些内容学生在前两个学段就已经有所接触,本节课在学生已有知识和经验的基础上,继续探究平面内两条直线平行的位置关系,平行公理及其推论。因此本节课在教材中起着承上启下的作用。

2、学情分析:学生在此之前已经学习了直线、线段及射线,对直线已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于平行概念的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

3、目标分析:

1)通过生活中的一些实例来体会平行线的概念(知识与技能)

2)理解在同一平面内两条直线的位置关系,通过学生观察、操作、讨论等数学小组活动,让学生感受数学其实是充满无限的探索性和创造性。(过程与方法)

3)在学生探索平行公理及其推论的过程中,体会从数学的角度来理解问题,形成解决问题的策略和方法。(情感态度与价值)

一、根据以上对教材和目标的分析,所以我将本节课的教学重点及难点总结如下:

重点:学生通过观察、画图和讨论,共同探索平行公理的这一过程。

由于七年级学生的抽象思维能力还处于初级阶段,且从未接触过反证思想

难点:就是学生自己立的对平行公理推论进行清晰说理这一问题。

(一)、教法学法分析:

我将其归纳为一个4字要诀:动、探、乐、渗

1、动:通过多媒体动画情景,鼓励学生动手做、动笔画、动脑想、动口说;

2、探:激发学生强烈的探索欲望;

3、乐:促使学生乐于学习、乐于思考、乐于探索,乐于创新;

4、渗:不断渗透观察、猜想、归纳、类比等数学思维和方法给学生,力求做到“与学生的生活实践紧密联系”,让学生尝试自己来“说明道理”。

(二)教学过程分析:

(1)创设情境引入课题

分别出示笔直的竹子,塔,国旗的图片,让学生观察其特点。

设计意图:通过生活中常见的图形例子让学生自己找出其共同点,引出平行线的课题及概念,锻炼学生自我发现,总结,表达的能力!

(2)合作交流探索新知

①建立模型

在木条转动的过程中,有没有直线a与直线b不相交的位置呢?

设计意图:再次通过动态思维来强调两平行线之间没有交点的特点,加强学生的`认识及记忆!

接着向学生出示一个长方体,提问学生一个长方体不在同一平面的两条棱所在的直线是否相交,是否平行?

设计意图:强调说明平行线是在同一平面内的基础条件上锁建立的,加强学生认识的印象!

②平行线的概念及结论

在木条转动过程中存在一个直线a与直线b不相交的位置,这时直线a与b互相平行(parallel),记作a∥b,读作a平行于b。

结论:在同一平面内,两条直线的位置关系只有相交和平行两种。

③平行线的画法:(1)放(2)靠(3)推(4)画

动手实践:过直线AB外一点P作直线AB的平行线,看看你能作出吗?能作出几条?

设计意图:通过以上对平行线的初步了解及认识,立马让学生动手操作,学以致用,且强调画图的规范性,在此基础上引出平行公理及推论。

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。也就是说:如果b∥a, c∥a,那么b∥c 。

(3)反馈练习,落实新知

1、巩固练习

下面是几道判断题

(1)不相交的两条直线叫做平行线。(错)

(2)在同一平面内,不相交的两条直线必平行。(对)

(3)经过一点有且只有一条直线与已知直线平行。(错)

(4)在同一平面内的三条直线a、b、c,如果a∥b、b∥c,那么a∥c。(对)

设计意图:通过判断题所设置的“同一平面”“不相交”“直线外一点”来直观考察学生掌握的基本知识情况,同时加强学生对基本概念和性质的理解与思考!

2、综合运用

读下列语句,并画出图形:

(1)点P是直线AB外一点,直线CD经过点P,且与直线AB平行;

(2)直线AB、CD是相交直线,点P是直线AB、CD外的一点,直线EF经过点P且与直线AB平行,与直线CD相交于E。

设计意图:通过学生自己实际动手操作锻炼学生将知识化为动手的能力,使学生不光学习知识,更要锻炼他们的实际动手操作能力!

3、拓广探索

通过小红为妈妈设计一个规定为三行,然后变换各种队形的广场舞队列,以此来引出平行、相交的相关知识点。

小红的妈妈是舞蹈教师,有一次快到六一儿童节了,需要编排一个舞蹈,规定排成三行,然后变换各种队形。小红一听,高兴地对妈妈说:“这是我们学过的数学知识,让我来替您参谋参谋。”小红利用我们刚学过的知识:平面内三条直线的位置关系,设计出了四种队形。小红的妈妈一看,果然好办法,队形变化多端。

你知道小红是怎样设计的吗?

设计意图:通过一个生活实例来应用学生学习的平行线,相交线里面两两相交以及交于一点的数学知识,体现数学来源于生活,并能帮助我们解决生活问题的意识和思想

二、布置作业形成技能

考虑到学生的个体差异,所以我将本堂课的课后作业分为必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。

1、P19、第8题(必做)2、P41、第12题(选做)

三、教学设计说明

1、注重对学生几何学习兴趣的培养。

2、注重对“基础知识”的理解和“基本技能”的掌握,注重对学生创新能力的培养。

3、注重师生、生生间的交流。

四、板书设计:

5.2.1平行线

1、平行线的定义:例题:

2、平行线的画法:学生绘图区:

3、平行公理:

4、平行公理推论:课堂总结:

2、七年级数学下册《探索平行的条件》说课稿

七年级数学下册《探索平行的条件》说课稿范文

作为一名默默奉献的教育工作者,通常需要用到说课稿来辅助教学,借助说课稿可以更好地组织教学活动。那么大家知道正规的说课稿是怎么写的吗?下面是小编整理的七年级数学下册《探索平行的条件》说课稿范文,欢迎大家借鉴与参考,希望对大家有所帮助。

一、说教材分析

《探索两条直线平行的条件》是北师大版七年级下册第二章第二节第一课时,学生在直观认识了角,平行线与垂直,积累了初步的数学活动经验的基础上,本节将进一步探索平行线的有关事实,教材通过设置观察,操作,总结等探索活动过程,探索判断的条件,在直观认识的基础上,训练学生进行简单地说理,以加深对平行线的理解,进一步发展学生的空间观念,本节在知识方面、数学思想方法,学生的能力培养都是非常重要的。

二、说教学目标

根据教材内容安排思路,结合初一学生的认知特点,我拟定了以下的教育教学目标:

知士标:

1)经历探索两条直线平行的条件的过程,经历探索直线平行条件的过程,掌握利用同位角相等判别直线平行的结论,并能解决一些问题。

2)会识别由“三线八角”构成的同位角,会用三角尺过已知直线外一点画这条直线的平行线。

能力目标:

经历观察、操作、想象、推理、交流等活动,体会利用操作、归纳获得数学结论的过程,进一步发展空间想象、推理能力和有条理表达的能力。

情感目标:

使学生在积极参与探索、交流的数学活动中,体验数学与实际生活的密切联系,激发学生的求知欲,感受与他人合作的重要性。

三、说教学重点、难点

根据新课标,在研究教材的基础上我确定了:

重点:掌握两条直线平行的条件,能够正确认识同位角、内错角、同旁内角在图中的位置。

难点:判别两条直线平行的过程

其依据有:

(1)从知识体系来看,它是学习了角、平行线与垂线后的数学活动,在探索的基础上,初步了解推理论证的方法,逐步培养学生的思维能力和发展学生的空间观念。

(2)从学生的认知过程来看,主要是动手实践,自主探索,合作交流。

四、说教法、学法

针对初一学生的年龄特点和心理特征,以及他们的知识水平,本节课我以“动手操作—自主探索—合作学习—归纳总结—应用实践”的方法进行,让学生始终处于主动学习的学习状态,让学生有充分的思考机会,借助教具、多媒体演示,让学生在实践中思考,在思考着归纳总结的过程中培养其空间观念、推理能力和有条理表达的能力。

教法:操作法、观察法、讨论法、多媒体教学。

学法:动手操作、观察猜想、自主探究、合作交流、归纳总结。

教师准备:三角板,量角器、三根均匀的木条,图钉,多媒体课件。

学生准备:三角板、量角器、三根均匀的木条、图钉。

五、说教学过程:

(一)复习回顾、情景导入

首先复习了上学期学过的平行线的定义及判定两直线平行的条件(平行线的传递性)。并且让学生说说日常生活中平行线的认识,通过学生自己回忆可避免传统教学一问一答的方式,同时也可以活跃学生的`思维,为新课的学习做准备。

我还充分利用书上的实例请两位同学亲自做小木匠进行演示,提出问题导入新课。通过创设情景,激发学生的学习兴趣,同时也让学生体会到数学与现实生活有着密切的联系。

(二)动手实践、合作探究:

第一个环节:突破难点、合作探究同位角的概念。同位角的概念是本节课的难点,也是本章的难点,为了突破难点,我又设置以下几个问题:

1、∠1、∠5的边所在的直线是哪些直线?

2、公共直线是哪条?(公共直线就是第三条直线)

3、∠1、∠5可以看成哪两条直线被第三条直线截出的角?

4、∠1、∠5在位置上有哪些相同点?重点强调位置关系。

强调注意两个“同”字。“一同”:在被截线的同一侧,“二同”在截线的同一侧。为了有利于理解同位角,我还编了一句顺口溜:看三线,找截线,再以位置细分辨。通过找其他的同位角,既可以培养了学生的观察能力又加深学生对同位角的理解。在这我还设计了一个练习巩固同位角的概念

5、用同样的方法认识:内错角、同旁内角。

第二个环节:自主探究、合作交流直线a,b的位置关系与∠1、∠2的大小关系。这时我让学生拿出准备好的三根木条按要求固定木条b,c转动木条a,在转动过程中,观察图形,并回答以下三个问题:

1、观察∠1的变化以及它与∠2的大小关系。

2、你发现木条b与木条a位置关系发生了什么变化?

3、木条b何时与木条a平行?

让学生带着问题进行操作!

由于这一部分是本节课的重点,因此我给学生充足的时间去立操作、观察,通过自己多次操作,找出结论,然后小组内交流发表自己的看法,最后选派代表发言,得出结论。通过操作可以让学生积累数学活动经验,建立空间观念。通过交流,不同知识水平的学生加强了沟通,个性得到了张扬,而且培养了学生与人合作的精神和有条理的表达能力。我设置3个问题的目的是引导学生把抽象的数量关系与直观的位置关系联系起来,降低了难度。对回答问题的学生及时的给予肯定,让学生体验到成功的喜悦,同时也激发了学生学习数学的兴趣。

让学生再次用前面的三根木条操作、观察交流,得出结论。什么样的角才是同位角?由于学生刚接触到几何知识,逻辑思维能力比较弱,因此我注意引导学生对所得结论进行归纳总结。

第三个环节:归纳总结判定定理。引导学生用自己的语言归纳总结上两部分的结论,得出本节课的重点:同位角相等,两直线平行,这既发展学生的推理能力又加强学生的有条理的表达能力。

(三)应用巩固,逐步提高:

这一部分我由浅入深的设计了五个练习,比一比、考考你、我能行、我最棒、拓展思维。这些问题我通过让学生自己讲解,我给予适当的点评和引导。这既提高了学生的参与性,也体验了学生自身的价值!

(四)自我评价、回顾总结

让学生互相交流在本节课有何收获?这既培养了学生的概括能力又培养了学生的发散思维。我在赞赏学生学习成果的同时,把学生说的内容概括成要点加以总结。

1、同位角的概念

2、同位角相等,两直线平行。

(五)作业布置、拓展思维

A部分是对基础知识的巩固,而B部分是对能力的提高。这既巩固了学生的基础,也拓展了他们的思路。还关注了全体同学的发展!这也是新课改的思想。

(六)板书设计:

探索两条直线平行的条件

1、认识三线八角

同位角

内错角

同旁内角

2、探索两条直线平行的条件

同位角相等,两直线平行

几何语言为:∵∠1=∠2(已知)

∴a∥b(同位角相等,两直线平行)

3习题讲解

六、说教学效果评价

通过本节课教学,我认为学生在参与中激发了自己的学习兴趣和欲望,其参与合作能力会得到一定提高,自主构建了自己的逻辑思维能力,为下一步学习打下良好的基础

我的说课完毕,谢谢大家!

3、初中数学七年级下册《相交线》说课稿

说课内容选自义务教育课程标准实验教科书《数学》七年级下册,第五章相交线与平行线中的5.1.1相交线第一课时,主要内容包括:对顶角、邻补角的定义、对顶角的性质,下面我将从教学背景、教学目标的确定、教学重点与难点、教学方式与手段、教学过程设计等几个方面对本节课的教学设计进行说明.

一、背景分析

1.学科的特点

两条直线的位置关系有三种,相交、平行和异面,异面的知识在高中阶段学习,而平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,是初中阶段学习的重点内容之一,同时也是平面几何图形由简单到复杂的最基本图形之一——由两条直线相交构成的角。相交线、平行线在现实生活中随处可见,教学内容紧密联系学生生活和社会发展,同时它们也是同一平面内两条直线的基本位置关系;在七年级上册,已经学习了最基本的平面图形——直线、射线、线段和角,了解了它们的性质,是本章学习的基础;在后续的学习中,三角形、特殊四边形、相似形、圆的知识中,都和相交线的知识息息相关,对顶角相等的性质主要是传递角相等。数学作为一门学科,主要是运用理性,以理服人。学习逻辑推理的顺序按照“说点儿理”“说理”“简单推理”“用符号表示推理”等不同层次分阶段逐步加深。

2.数学课程标准的要求

新课标提出,在课程的学习过程中重视学生的数学活动,发展学生的数感、符号感、空间观念、统计观念,以及应用意识与推理能力。在发展空间观念中提出:能从复杂的图形中分解出基本的图形,并能分析出其中的基本元素及其关系,我讲的相交线这节课恰好使成复杂图形的一个基本图形,是一个起始点,数学课程标准要求了解补角,对顶角,知道等角的补角相等、对顶角相等,我觉得有些低,在后续的学习知识中不断的会遇到对顶角的图形,所以我把它定位于“理解对顶角相等的性质,并能运用它解决一些实际问题”

3.教材处理

教材从剪刀剪开布片过程中角的变化来引出两条直线相交所成的角的问题,引出对顶角和邻补角的概念;对于“对顶角相等”,教科书首先设置一个“讨论”栏目,让学生度量两条相交直线所成的角的大小,通过学生的充分讨论,探究发现对顶角相等这个结论,然后再对这个结论进行了说理,这样就将实验几何与论证几何相结合。通过阅读教材,理解教材,我在知识的引入上没有采用教材提供的方法,而是从学生已有的知识经验出发,采用画一画,画出一个角两边的反向延长线,即构成两条相交的直线,来探索4个角之间的位置和大小关系;对于例1的处理,则增加了两个变式练习,主要向学生渗透用方程思想解决几何问题;然后增加了理解概念的识图题,和实际应用此知识的题目,感受学习相交线知识的必要性。

4.学情分析

(1)知识的储备:在小学,学生结合生活情境了解平面上两条直线的平行和相交;在七年级上册,我们已经初步接触简单的平面几何图形,重点研究了线段和角,知道了互余、互补的角,等角的补角(余角)相等,能画出图形思考问题,初步掌握思考几何问题的方法,学会说点儿理。由于学生的来源复杂,掌握知识的程度各不相同,70%的学生能准确的画出一个角的余角或补角,知道余角和补角的性质,但应用性质则只有30%的学生能有意识的用。

(2)能力的储备:学生初步具有探究问题的能力,积累了一定的知识经验,有一定的学习迁移能力,但对于几何知识的准确表达还存在着困难,尤其是由图形语言、文字语言和符号语言的相互转换,还不能做到准确;

(3)心理特点:初一年级大都是十二、三岁的孩子,它们积极、热情,喜欢探究活动,有一定的合作探究意识,学习的方式由偏重机械记忆向偏重理解记忆过渡,但他们热衷于口头表达,在笔头表达上70%的学生存在书写困难。

基于以上分析,我把教学目标确定为:

二、教学目标:

1.了解邻补角、对顶角的概念,能找出图形中的一个角的邻补角和对顶角;理解对顶角相等的性质,并能运用它解决一些实际问题;

2.学生通过动手画图、观察、推断、交流、归纳小结等数学活动,初步感受学习几何知识的方法,体会图形语言、文字语言、符号语言三种语言的相互转换;

3.通过探索邻补角、对顶角的定义及对顶角相等的性质和应用,培养学生言之有理、言之有据的语言表达和书写能力;

三、教学重点和难点:

根据学生小学已有的知识、学生的思维特点以及课标要求和教材内容的分析,我认为教学重点是对顶角性质与应用,教学难点是对顶角性质应用几何语言的表达.

四、教学方式与手段

在初中,有效的数学学习方式不能单纯的依赖模仿和记忆,动手实践、自主探索与合作交流是学习的重要方式,在教学中我采用启发式,引导学生思考,探究,交流,学生在这样的学习过程中对知识进行认识、体会和内化;教学手段则采用多媒体辅助教学。

五、教学过程设计

在学习的过程中,学生始终是学习的主体,老师是学习的组织者、引导者、合作者,本节课以相交线的知识为载体,思维为主线,培养能力为目标的原则,突出多媒体这一教学技术手段在辅助知识产生和突破重难点的优势,基于这种理念,我把教学过程设成如下几个环节:

1.回顾知识,感受必要;

2.逐步探究,形成新知;

3.理解概念,巩固新知;

4.实际应用,体会必要;

5.小结回顾,习惯反思;

6.分层作业,获得进步。

下面就突出难点、突破难点作具体的说明:

5.1回顾知识,感受必要

用几何画板演示学习几何知识简单的过程:点——直线、射线、线段——角,画出角的两边的延长线,引发新的知识——相交线。

意图是:回顾几何知识的学习过程,重温角的概念,利用已有的知识经验去探索,构想新概念,寻求新知识、新思路和新方法

5.2逐步探究,形成新知:

学生画出图形后,提出问题:

问题1:你能描述一下∠AOB与∠1有什么关系吗?你能给这对角起个新名字吗?

问题2:回忆刚才的作图,∠2是怎样形成的?∠2和∠4在位置上有什么特殊的关系吗?你能给∠4和∠2这对角起名吗?这两个角数量上有什么关系呢?

∵∠1与∠4互补,∠1与∠2互补

∴∠4=∠2(同角的补角相等)

即:对顶角相等

设计意图:让学生观察图形,抓住两个角的特点,尝试给出邻补角、对顶角的概念,培养学生数学语言的表达;进一步观察,得到对顶角相等的性质,训练学生由图形语言到文字语言,再到符号语言的三种语言的转换,培养学生几何语言的表达的能力,训练学生语言的表达的准确性;

5.3理解概念,巩固新知;

(1)通过3个识图题,巩固邻补角和对顶角的概念

1.下列各图中∠1、∠2是邻补角吗?为什么?

2.下列各图中,∠1和∠2是对顶角吗?为什么?

3.如图,直线AB、CD相交于O点,∠AOE=90°,

∠1和∠2是角;

∠1和∠4互为角;

∠2和∠3互为角;

∠1和∠3互为角;

∠2和∠4互为角.

(2)通过两个例题的学习,体会对顶角相等、邻补角互补的应用。

例1如图,直线a、b相

交,∠1=40°,求∠2、∠3、

∠4的度数.

变式1:若∠2是∠1的3倍,求∠3的度数。

变式2:若∠2比∠1大40度,求∠4的度数。

例2如图,已知直线AB、CD相交于点O,

OA平分∠EOC,并且∠EOC=70°,求∠BOD的

度数.

例1的设置是要学生观察图形,应用知识,要求学生会表达,即:由什么,根据什么,得到什么。变式练习渗透用方程的思想解决几何问题的方法

例2的设置是结合前面的角平分线的知识与新知识组合,再次体会新知识的应用,培养学生思考问题的有序性

5.4实际应用,体会必要;

做一做,试一试

1.要测量两堵墙所成的∠AOB的度数,

但人不能进入围墙,如何测量?说明道理

2.如图所示,有一个破损的扇形零件,

利用图中的量角器可以量出这个扇形零件的

圆心角的度数.你能说出所量角是多少度

吗?你的根据是什么?

用这节课所学的知识解决生活中的现实问题,体会学习对顶角和邻补角的价值,体会数学知蚀源于生活又服务于生活的.

5.5小结回顾,习惯反思

为了让学生学完知识后形成反思与小结的良好学习习惯,将新知噬入已有的知识体系,引导学生从知识上、学习的方法上和后续知识的设想上进行了小结。内容如下:

1.对比邻补角和对顶角的概念,它们有什么异同?

相同点:1都是两条直线相交而成的角;

2都有一个公共顶点;

3都是成对出现的;

不同点:1邻补角要有公共边,而对顶角没有公共边;

2两直线相交时,对顶角只有两对,邻补角有四对

2.今天主要学习邻补角和对顶角的知识,我们从哪几方面研究的?

(1)从两个角位置和两个角数量关系,两方面进行了探究;

(2)从图形、文字、符号语言的转换;

(3)在实际生活中的应用。

3.我们的研究由一个角到两个角,由一条直线到两条直线,图形由简单逐渐变复杂,根据你的学习经验,接下来我们要研究哪些知识?说说你的想法?

期待学生能回答:

(1)垂直(两条相交直线的特殊位置);

(2)添加一条直线,研究三线八角;

两直线平行……

5.6分层作业,获得进步。

必做题:第8页习题5.1第1题和第2题,第9页8题写书上;第9页第7题,写本上.

选作题:如图,直线AB、CD交EF

于点G、H,∠2=∠3,∠1=70°,求∠4的度数.

必做题要求所有的学生完成,选做题为学有余力的学生准备,目的是初步体会对顶角相等在后续知识中怎样应用。

说课到此结束,欢迎大家批评指正!

4、初中数学七年级下册《相交线》说课稿

今天,我说课的课题是:人教版七年级数学下册第五章第一节《相交线》。这节课的主要内容包括:对顶角,邻补角的定义,对顶角的性质。下面,我将从六个方面对该节课的'教学设计进行说明:

一、教材分析

(一)地位、作用

该节课是在学生们已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生们的识图能力,激发学生们的学习兴趣具有推动作用,所以该节课具有很重要的地位和作用。

(二)、教学目标

根据学生们已有的知识基础,依据《教学大纲》的要求,确定该节课的教学目标为:

1、知识与技能

(1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。

(2)掌握“对顶角相等的性质”。

(3)理解对顶角相等的说理过程。

2、过程与方法

经历质疑,猜想,归纳等数学活动,培养学生们的观察,转化,说理能力和数学语言规范表达能力。

3、情感态度和价值观

通过小组讨论,培养合作精神,让学生们在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。

(三)重点,难点

根据学生们已有的知识基础,依据教学大纲的要求,确定该节课的重难点为:

重点:邻补角和对顶角的概念及对顶角相等的性质。

难点:写出规范的推理过程和对对顶角相等的探索。

二、教学方法

在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生蜜察、比较、归纳、总结,使学生们经历了从具体到抽象,从感性上升到理性的认识过程。

三、学法指导

让学生们学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯。

四、学情分析

七年级的孩子思维活跃,模仿能力强。同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结。但是受年龄特征的影响,他们对知识迁移能力不强,推理能力还需进一步培养。

五、教学过程

(一)创设情景,引入新课

多媒体显示立交桥、防盗网。

设问:从这些图片得出什么几何图形?学生们会指出:相交线。从而引出了课题:相交线。让学生们借助已有的几何知识从现实生活中发现数学问题,建立直观、形象的数学模型。

(二)新课探讨

1、对顶角、邻补角的位置关系。

让学生们用已备好的剪刀剪纸片、向他们提出以下问题:

问题1:一把张开的剪弟联想出什么几何图形?说一说,剪刀剪开纸片的过程中有关角的变化?

学生蜜察,很容易把剪刀的构造想象成两条相交直线。在剪刀剪纸片的过程中,把手和刀刃之间的夹角不断发生变化,但是这些角之间存在着不变的位置和数量关系。

通过生活中的情景抽象出几何图形,培养他们的空间观念,发展几何直觉。

问题2:任意两条相交的直线在形成的4个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?

学生们以事先分好的小组(四人为一组)为单位,通过观察,思考,讨论,并填好表格中的内容。接着我加以适当启发引导,让他瞄纳出对顶角,邻补角的概念以及对顶角和邻补角的判定方法。然后让学生们依据这些判定方法找出图中的对顶角和邻补角。有些同学可能概括得不太好,我将肯定他们探讨的热情和发言的勇气。同时,帮助他们进行纠正。让他们感觉到老师对他们不抛弃,不放弃,建立和谐的教学氛围。这样,提出问题,引导学生们分析问题,以至解决问题,体现了新型的课改精神。

2、对顶角的大小关系

学生们根据已有的知识可以肯定邻补角互补,也可以猜到对顶角相等,但不是很肯定。为了让学生们的猜想得于肯定,我的做法如下:

(1)我演示教具(自己制作),也给学生们操做。

(2)让学生们通过量角器测量。

(3)让学生们把画好的对顶角剪下来,进行翻折。

(4)引导学生们根据同角的补角相等来推导对顶角相等的性质。

引导他们写出推理过程后,我在黑板上板出规范的过程。学生们通过观察,比较,找出自己写的和老师写的有哪些异同点。

学生们的自主学习应接受老师的指导与引导,这也体现了新课程理念下新型师生关系,即教师是合作者,引导者。通过学生们的思考、培养学生们的逻辑思维能力以及严谨的治学态度,使学生们初步养成言之有据的习惯。

(三)让学生们举出生活中对顶角相等的例子

学生们可以通过合作性交流、思考、发表见解。

让学生们举出生活中对顶角相等的例子,使学生们进一步理解对顶角的性质,体会生活中的对顶角,让他们感受到数学来源于生活,也应用于生活。打破了他们一直误认为数学是一门枯燥无味的学科这一观念。增加了他们学习数学的兴趣。

(四)例题解析

例如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数。

引导学生们先寻找已知角和未知角之间的位置关系,再寻找已知角和未知角之间的数量关系,此题难度不大,让一位学生们在黑板上板演。其他同学一起来批改。

(五)习题反馈

为了再次强化对顶角、邻补角的概念及对顶角性质的理解,我适当增加些练习,对于习题,循序渐进提高难度,让不同层次的学生们都得于提高,对于趣味题和拓展题,学生们通过思考,讨论,寻找规律,让他们进一步感觉“知蚀源于实践”,同时学生们的思路得于拓展。

(六)、课堂小结

1、这节课学了哪些概念和性质?

2、你还有什么疑惑?

3、谈谈你对该节课的收获。

将该节课所学知识进行回顾和梳理,进一步培养他瞄纳,总结能力。

(七)布置作业

我布置了必做题和选做题,为学生们提供个性化发展的空间,及时了解学生们的学习效果,使学生们养成立思考,反思学习过程的习惯。

5、初中数学七年级下册《相交线》说课稿

尊敬的各位评委各位老师上午好,我今天说课的题目是《相交线》。

一:教材分析

1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时

2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学习平面直角坐标系奠定基石,因此本节课具有承前启后的重要作用

3、教学的重点、难点:

重点:邻补角、对顶角的概念,对顶角的性质和应用。

难点:理解对顶角性质的探索

(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)

4、教学目标:

A:知识与技能目标

(1).理解对顶角和邻补角的概念,能在图形中辨认.

(2).掌握对顶角相等的性质和它的推证过程

(3).会用对顶角的性质进行有关的简单推理和计算.

B:过程与方法目标

(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。

(2).体会具体到抽象再到具体的思想方法.

C:情感、态度与价值目标

(1).感受图形中和谐美、对称美.

(2).感受合作交流带来的成功感,树立自信心.

(3).感受数学应用的广泛性,使学生更加热爱数学。

二、学情分析:

在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.

三、教法和学法:

教法:

叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.

学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.

四、教学过程:

1课前准备:课件,剪刀,纸片,相交线模型

2教学过程:设置以下六个环节

环节一:情景屋(创设情景,激发学习动机)

请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线

环节二:问题苑(合作交流,解释发现)

通过一些问题的设置,激发学生探究的欲望,具体操作:

(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化

(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。

(让学生充分的感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)

(3):分析研究此模型:

设置以下一系列问题:A、两直线相交构成的4个角两两相配共能组成几对?(6对)

B、对各对角进行分析,首先从位置上去分析————结论:可把这六对角分成两大类,一类为哪些角?——特点?——它们有一条公共边,它们的另一边互为反向延长线——引出概念——邻补角。

另一类是哪些角?———特点?——它们的两边互为反向延长线——引出概念——对顶角

C、再从大小上进行分析——量一量——结论:邻补角互补、对顶角相等。

D、你能阐述它们互补和相等的理由吗?

(一堂好课,是由一系列的真问题组成的,本环节在老师的引导下,由学生自由的发挥,通过观察分析,交流讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)

环节三:快乐房(大胆创设,感悟变换)

(设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)

环节四:实例库(拓展应用,升华提高)

例子1:是一组不同形式的角,判断是否为对顶角,此题的目的十固对顶角的概念,培养学生的识图能力

例子2:例子2是用对顶角和邻补补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力。

(一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体)

6、七年级数学下《平行线性质》说课稿

各位专家评委,各位老师,您们好!

我叫初雨,来自北京市朝阳区的日坛中学.很高兴有机会参加这次教学基本功的展示活动并得到您们的指导.

今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册第五章的5.3节《平行线的性质》(第一课时).下面我就从教学目标的确定;教学重点、教学难点的分析;教学方式及教学手段的选择;教学过程设计这四个方面把我的理解和认识作一个说明.

一、教学目标的确定

平面内两条直线的位置关系是空间与图形所要研究的基本问题,这些内容学生在小学已经有所了解(结合生活情景了解平面上两条直线的平行和相交(包括垂直)关系),本章将在学生已有知识和经验的基础上,继续进行研究.本节课在理解了两直线平行的判定方法的基础上,进一步对平行线的性质展开研究.并在探索性质和与他人合作交流等活动中,发展合情推理,进一步学习有条理的思考与表达.

根据数学课程标准(实验)的要求和教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:

1.了解平行线的性质,并能运用它进行简单的运算和证明;

2.能够运用“两直线平行,同位角相等”这一基本事实证明平行线的性质(两直线平行,内错角相等;两直线平行,同旁内角互补);

3.通过观察——实验——猜想——证明的过程体验探索性质的方法,激发学生学习兴趣,培养学生严谨的学风.

二、教学重点、教学难点的分析

平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到.这部分内容是后续学习的基础,让学生通过探索活动来发现结论,经历知识的“再发现”过程,可增强学生对性质的认识和理解,培养学生多方面的能力.因此我确定本节课的重点为:探究平行线的性质.

由于学生是第一次接触基本图形的性质和判定方法,且它们互为逆命题,所以学生很容易在记忆和使用时将其混淆.因此,我确定本节课的难点为:明确平行线的性质和判定的区别.

三、教学方式及教学手段的选择

根据本节课的教学目标和重点、难点,我确定本节课的教学方式为启发探究式.从学生熟悉的生活实例出发,通过立思考、动手操作、小组合作交流等数学活动,逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,挖掘学习潜能;同时在教学过程中对不同层次的学生分别进行指导,让每个学生都能得到一定的发展.

另外,我注意现代信息技术与学科教学的整合,信息技术工具的使用能为学生的数学学习和发展提供丰富多彩的教育环境和有力的学习工具.利用几何画板制作图形,并让图形动起来,借助测量功能度量角的度数,有助于学生在观察图形运动变化的过程中,发现其中不变的位置关系和数量关系,从而发现图形的性质,变抽象为直观,变复杂为简单,加快了教学节奏,扩大课堂容量,提高课堂教学效益.

四、教学过程设计

【教学结构设计】

本节课的流程分五部分:创设情境激发兴趣;探究新知实验猜想;归纳性质说理证明;应用新知巩固练习;归纳小结布置作业.

【教学过程设计】

〈一〉创设情境激发兴趣

2008年8月8日将在北京举办第29届奥运会,承办多项比赛项目的国家奥林匹克体育中心位于北四环和安苑路之间,这两条路互相平行,现需要修建一条贯穿两条路的新干线,设计新修道路与安苑路夹角为65,那么它与北四环的夹角是多少度?

通过学生熟悉并关注的奥运道路建设问题作为引入,创设情境设置疑问,激发学生学习兴趣.引导学生从地图中抽象出基本图形,将问题转化为探索两直线平行,同位角之间有怎样的数量关系.

〈二〉探究新知实验猜想

本环节设置了学生活动和教师演示两个环节.

学生活动:

1.作出两条平行直线a、b被第三条直线c所截,标出所得的8个角,你能借助你所画的图想办法解决如果已知两条直线平行,同位角有怎样的数量关系这个问题吗?如果两直线平行,内错角、同旁内角又各有怎样的数量关系呢?

学生首先立完成活动1,鼓励学生运用多种方法进行探索,开放式的问题有利于培养学生的创新思维.在此过程中教师要关注:学生能否按要求正确画图并准确标记直线和角;能否准确找出同位角、内错角和同旁内角,分别进行讨论,并得出正确结论.对于学有困难的学生教师要给予具体的帮助、鼓励和指导,使全班同学都能积极参与探索活动.

2.在小组内同伴交流:解决问题的方法一样吗?得到的结论相同吗?并把自己的猜想表述出来.

学生以四人合作小组为单位进行交流讨论.学生可能想到的方法:(1)用量角器进行度量;(2)通过剪纸拼图进行比较.

通过交流积累了较为充分的事实基础,为有效地进行归纳概括提供了帮

助.教师深入合作小组,倾听学生的见解,时刻关注学生在这个过程中生成的新问题,并给予适时的指导点拨,鼓励学有困难的学生积极投入到讨论中,注意表扬表现突出的学生.

3.展示探究过程和结论

合作小组代表上台借助投影全面展示本小组的探究过程和结果,教师注意选择具有代表性的各种方法,并关注学生叙述结论的语言是否准确.

鼓励学生在立思考的基础上与他人合作交流,每个学生的立思考为合作交流奠定了基础,同伴间的合作交流又能弥补个人的思考有时难以全面和深入的情况,从而帮助学生获得较强的感性认识,充分体现认知过程.探究平行线的性质是本节课的教学重点,让学生充分经历动手操作—立思考—合作交流—得出猜想的探究过程,突出重点.适当的合作交流也有利于学生逐渐形成良好的身心素质.

教师演示:

平行线的性质比较抽象,根据学生的认知特点,加强直观教学,利用几何画板的度量功能分别量出三对同位角、内错角、同旁内角的度数,让学生直观验证探究的结论.然后改变截线的位置,帮助学生在运动变化中进一步明确其中不变的数量关系.

〈三〉归纳性质说理证明

1.平行线的性质

性质1.两直线平行,同位角相等.

性质2.两直线平行,内错角相等.

性质3.两直线平行,同旁内角互补.

在学生合作交流后,教师归纳并板演平行线的性质,规范文字语言.

2.试一试用符号语言表达上述三个性质.

学生立思考回答,教师组织学生互相补充,并出示准确形式.

如图:

性质1.∵a∥b,性质2.∵a∥b,性质3.∵a∥b,

∴∠1=∠2.∴∠2=∠3.∴∠5+∠6=180o.

帮助学生理解文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础.

3.你能根据平行线的性质1说出性质2、3成立的道理吗?

例如:如图,

∵a∥b,

∴∠1=∠2.()

又∵∠3=,(对顶角相等)

∴∠2=∠3.

类似的,对于性质3请写出推理过程.

学生观察图,立思考填空.此处将由性质1推导性质2的`过程以留白形式出现,循序渐进的引导学生思考,使学生初步养成言之有据的习惯,从而能进行简单的推理.教师关注学生立书写性质3的推理过程中能否做到知识的合理迁移,书写是否正确.引导学生从“说点儿理”向“说清理”过渡,由模仿到立操作逐步培养学生的推理能力.

4.对比平行线的判定方法和性质,你能说出它们的区别吗?

学生立思考后回答,教师引导学生明确判定与性质最大的区别在于条件和结论互逆,即从角的相等或互补关系得到两直线平行是平行线的判定;反过来,由直线的平行得到角的相等或互补关系,是平行线的性质.这里是学生升入初中以来第一次接触判定和性质,要让学生明确它们之间的区别,防止在应用时发生混淆.为后面学习其他图形的判定和性质作好铺垫.

〈四〉应用新知巩固练习

1.现在你能解决奥运会道路建设的问题了吗?

2.已知:如图1,MN∥EF,CD分别交MN、EF于A、B,

找出图1中相等的角,并说明理由.

3.如图2,填空:

①∵ED∥AC(已知)

∴∠1=∠C(

;)

②∵AB∥DF(已知)

∴∠3=∠()

③∵AC∥ED(已知)

∴∠=∠(两直线平行,内错角相等)

4.如图3,∠1+∠2=180,∠3=108,求∠4的度数.

首先利用所学知识解决引入问题,充分利用教学资源,并让学生体会数学是解决实际问题的有效手段;第2题回归基本图形让学生充分指出相等的角(包括对顶角),从而体会根据平行线的性质可以达到转化角的效果;第3题从不同角度应用性质,强化重点知识的理解;第4题先判定平行再应用性质进行简单的推理计算,从而在解题过程中辨析判定和性质,要求学生会用平行线的性质进行计算.随堂练习可以帮助学生巩固新知,老师从学生解题过程中了解教学效果,从简单图形到复杂图形、从单一知识到几个知识的综合运用,进一步提高学生的识图能力,逐步提高推理能力和解决问题的能力.

〈五〉归纳小结布置作业

课堂小结:

1.今天我们学习了平行线的性质:

性质1.两直线平行,同位角相等.

性质2.两直线平行,内错角相等.

性质3.两直线平行,同旁内角互补.

2.平行线的性质和判定的区别与联系

条件结论

判定

性质

3.我们知道了能够运用平行线的性质得到两个角相等或互补的结论,它是后面学习中进行计算和证明的常用依据,可以用来转化角.

4.回顾发现平行线的性质所经历的环节,感受发现图形性质的方法.

师生共同对本节课进行总结,教师引导学生从知识和技能两方面进行归纳.帮助学生梳理知识脉络,回顾平行线的性质,突出教学重点;引导学生说明白性质和判定的联系和区别,课下完成对比表格,下节课进行展示,从而突破难点;最后教师点明平行线的性质的作用及发现图形性质的方法,提升学生的认识.

分层作业:

(1)看书P21—P23(补全书上留白,划出重点内容);

(2)书P25习题5.3第1—6题;

(3)探究题(选作)

如图1:已知AB∥DE,那么∠1+∠2+∠3等于多少度?为什么?

当已知条件不变,而图形变为如图2时,结论改变了吗?图3中的∠1+∠2+∠3+∠4是多少度呢?如果如图4所示,∠1+∠2+∠3+…+∠n的和为多少度?你找到了什么规律吗?

作为课堂教学的评价延续,可及时了解学生对本节课知识的掌握情况,对教学进度和方法进行适当的调整,对有困难的学生给予适时的指导.看书帮助学生养成复习的好习惯;必作题进一步巩固平行线的三个性质及应用;选作题为学有余力的学生提供更广阔的探索空间,提高解决问题的能力.

以上是我对本节课教学的一些设想,还有很多不足之处,恳请您们的批评指正,谢谢!

7、七年级数学下《平行线性质》说课稿

各位专家评委,各位老师,您们好!

我叫初雨,来自北京市朝阳区的日坛中学.很高兴有机会参加这次教学基本功的展示活动并得到您们的指导.

今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册第五章的5.3节《平行线的性质》(第一课时).下面我就从教学目标的确定;教学重点、教学难点的分析;教学方式及教学手段的选择;教学过程设计这四个方面把我的理解和认识作一个说明.

一、教学目标的确定

平面内两条直线的位置关系是空间与图形所要研究的基本问题,这些内容学生在小学已经有所了解(结合生活情景了解平面上两条直线的平行和相交(包括垂直)关系),本章将在学生已有知识和经验的基础上,继续进行研究.本节课在理解了两直线平行的判定方法的基础上,进一步对平行线的性质展开研究.并在探索性质和与他人合作交流等活动中,发展合情推理,进一步学习有条理的思考与表达.

根据数学课程标准(实验)的要求和教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:

1.了解平行线的性质,并能运用它进行简单的运算和证明;

2.能够运用“两直线平行,同位角相等”这一基本事实证明平行线的性质(两直线平行,内错角相等;两直线平行,同旁内角互补);

3.通过观察——实验——猜想——证明的过程体验探索性质的方法,激发学生学习兴趣,培养学生严谨的学风.

二、教学重点、教学难点的分析

平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到.这部分内容是后续学习的基础,让学生通过探索活动来发现结论,经历知识的“再发现”过程,可增强学生对性质的认识和理解,培养学生多方面的能力.因此我确定本节课的重点为:探究平行线的性质.

由于学生是第一次接触基本图形的性质和判定方法,且它们互为逆命题,所以学生很容易在记忆和使用时将其混淆.因此,我确定本节课的难点为:明确平行线的性质和判定的区别.

三、教学方式及教学手段的选择

根据本节课的教学目标和重点、难点,我确定本节课的教学方式为启发探究式.从学生熟悉的生活实例出发,通过立思考、动手操作、小组合作交流等数学活动,逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,挖掘学习潜能;同时在教学过程中对不同层次的学生分别进行指导,让每个学生都能得到一定的发展.

另外,我注意现代信息技术与学科教学的整合,信息技术工具的使用能为学生的数学学习和发展提供丰富多彩的.教育环境和有力的学习工具.利用几何画板制作图形,并让图形动起来,借助测量功能度量角的度数,有助于学生在观察图形运动变化的过程中,发现其中不变的位置关系和数量关系,从而发现图形的性质,变抽象为直观,变复杂为简单,加快了教学节奏,扩大课堂容量,提高课堂教学效益.

四、教学过程设计

【教学结构设计】

本节课的流程分五部分:创设情境激发兴趣;探究新知实验猜想;归纳性质说理证明;应用新知巩固练习;归纳小结布置作业.

【教学过程设计】

〈一〉创设情境激发兴趣

2008年8月8日将在北京举办第29届奥运会,承办多项比赛项目的国家奥林匹克体育中心位于北四环和安苑路之间,这两条路互相平行,现需要修建一条贯穿两条路的新干线,设计新修道路与安苑路夹角为65,那么它与北四环的夹角是多少度?

通过学生熟悉并关注的奥运道路建设问题作为引入,创设情境设置疑问,激发学生学习兴趣.引导学生从地图中抽象出基本图形,将问题转化为探索两直线平行,同位角之间有怎样的数量关系.

〈二〉探究新知实验猜想

本环节设置了学生活动和教师演示两个环节.

学生活动:

1.作出两条平行直线a、b被第三条直线c所截,标出所得的8个角,你能借助你所画的图想办法解决如果已知两条直线平行,同位角有怎样的数量关系这个问题吗?如果两直线平行,内错角、同旁内角又各有怎样的数量关系呢?

学生首先立完成活动1,鼓励学生运用多种方法进行探索,开放式的问题有利于培养学生的创新思维.在此过程中教师要关注:学生能否按要求正确画图并准确标记直线和角;能否准确找出同位角、内错角和同旁内角,分别进行讨论,并得出正确结论.对于学有困难的学生教师要给予具体的帮助、鼓励和指导,使全班同学都能积极参与探索活动.

2.在小组内同伴交流:解决问题的方法一样吗?得到的结论相同吗?并把自己的猜想表述出来.

学生以四人合作小组为单位进行交流讨论.学生可能想到的方法:(1)用量角器进行度量;(2)通过剪纸拼图进行比较.

通过交流积累了较为充分的事实基础,为有效地进行归纳概括提供了帮

助.教师深入合作小组,倾听学生的见解,时刻关注学生在这个过程中生成的新问题,并给予适时的指导点拨,鼓励学有困难的学生积极投入到讨论中,注意表扬表现突出的学生.

3.展示探究过程和结论

合作小组代表上台借助投影全面展示本小组的探究过程和结果,教师注意选择具有代表性的各种方法,并关注学生叙述结论的语言是否准确.

鼓励学生在立思考的基础上与他人合作交流,每个学生的立思考为合作交流奠定了基础,同伴间的合作交流又能弥补个人的思考有时难以全面和深入的情况,从而帮助学生获得较强的感性认识,充分体现认知过程.探究平行线的性质是本节课的教学重点,让学生充分经历动手操作—立思考—合作交流—得出猜想的探究过程,突出重点.适当的合作交流也有利于学生逐渐形成良好的身心素质.

教师演示:

平行线的性质比较抽象,根据学生的认知特点,加强直观教学,利用几何画板的度量功能分别量出三对同位角、内错角、同旁内角的度数,让学生直观验证探究的结论.然后改变截线的位置,帮助学生在运动变化中进一步明确其中不变的数量关系.

〈三〉归纳性质说理证明

1.平行线的性质

性质1.两直线平行,同位角相等.

性质2.两直线平行,内错角相等.

性质3.两直线平行,同旁内角互补.

在学生合作交流后,教师归纳并板演平行线的性质,规范文字语言.

2.试一试用符号语言表达上述三个性质.

学生立思考回答,教师组织学生互相补充,并出示准确形式.

如图:

性质1.∵a∥b,性质2.∵a∥b,性质3.∵a∥b,

∴∠1=∠2.∴∠2=∠3.∴∠5+∠6=180o.

帮助学生理解文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础.

3.你能根据平行线的性质1说出性质2、3成立的道理吗?

例如:如图,

∵a∥b,

∴∠1=∠2.()

又∵∠3=,(对顶角相等)

∴∠2=∠3.

类似的,对于性质3请写出推理过程.

学生观察图,立思考填空.此处将由性质1推导性质2的过程以留白形式出现,循序渐进的引导学生思考,使学生初步养成言之有据的习惯,从而能进行简单的推理.教师关注学生立书写性质3的推理过程中能否做到知识的合理迁移,书写是否正确.引导学生从“说点儿理”向“说清理”过渡,由模仿到立操作逐步培养学生的推理能力.

4.对比平行线的判定方法和性质,你能说出它们的区别吗?

学生立思考后回答,教师引导学生明确判定与性质最大的区别在于条件和结论互逆,即从角的相等或互补关系得到两直线平行是平行线的判定;反过来,由直线的平行得到角的相等或互补关系,是平行线的性质.这里是学生升入初中以来第一次接触判定和性质,要让学生明确它们之间的区别,防止在应用时发生混淆.为后面学习其他图形的判定和性质作好铺垫.

〈四〉应用新知巩固练习

1.现在你能解决奥运会道路建设的问题了吗?

2.已知:如图1,MN∥EF,CD分别交MN、EF于A、B,

找出图1中相等的角,并说明理由.

3.如图2,填空:

①∵ED∥AC(已知)

∴∠1=∠C(

;)

②∵AB∥DF(已知)

∴∠3=∠()

③∵AC∥ED(已知)

∴∠=∠(两直线平行,内错角相等)

4.如图3,∠1+∠2=180,∠3=108,求∠4的度数.

首先利用所学知识解决引入问题,充分利用教学资源,并让学生体会数学是解决实际问题的有效手段;第2题回归基本图形让学生充分指出相等的角(包括对顶角),从而体会根据平行线的性质可以达到转化角的效果;第3题从不同角度应用性质,强化重点知识的理解;第4题先判定平行再应用性质进行简单的推理计算,从而在解题过程中辨析判定和性质,要求学生会用平行线的性质进行计算.随堂练习可以帮助学生巩固新知,老师从学生解题过程中了解教学效果,从简单图形到复杂图形、从单一知识到几个知识的综合运用,进一步提高学生的识图能力,逐步提高推理能力和解决问题的能力.

〈五〉归纳小结布置作业

课堂小结:

1.今天我们学习了平行线的性质:

性质1.两直线平行,同位角相等.

性质2.两直线平行,内错角相等.

性质3.两直线平行,同旁内角互补.

2.平行线的性质和判定的区别与联系

条件结论

判定

性质

3.我们知道了能够运用平行线的性质得到两个角相等或互补的结论,它是后面学习中进行计算和证明的常用依据,可以用来转化角.

4.回顾发现平行线的性质所经历的环节,感受发现图形性质的方法.

师生共同对本节课进行总结,教师引导学生从知识和技能两方面进行归纳.帮助学生梳理知识脉络,回顾平行线的性质,突出教学重点;引导学生说明白性质和判定的联系和区别,课下完成对比表格,下节课进行展示,从而突破难点;最后教师点明平行线的性质的作用及发现图形性质的方法,提升学生的认识.

分层作业:

(1)看书P21—P23(补全书上留白,划出重点内容);

(2)书P25习题5.3第1—6题;

(3)探究题(选作)

如图1:已知AB∥DE,那么∠1+∠2+∠3等于多少度?为什么?

当已知条件不变,而图形变为如图2时,结论改变了吗?图3中的∠1+∠2+∠3+∠4是多少度呢?如果如图4所示,∠1+∠2+∠3+…+∠n的和为多少度?你找到了什么规律吗?

作为课堂教学的评价延续,可及时了解学生对本节课知识的掌握情况,对教学进度和方法进行适当的调整,对有困难的学生给予适时的指导.看书帮助学生养成复习的好习惯;必作题进一步巩固平行线的三个性质及应用;选作题为学有余力的学生提供更广阔的探索空间,提高解决问题的能力.

以上是我对本节课教学的一些设想,还有很多不足之处,恳请您们的批评指正,谢谢!

8、二年级下册数学说课稿 克与千克说课稿

一、说教材《克和千克》是小学数学第四册的内容。

要求学生认识两个常用的质量单位克和千克,是学生对质量单位的初步尝试,也是为后面“吨”的教学奠定基础。从学生的感知规律和生活经验出发,灵活处理教材,先认识千克,再认识克,然后理解克与千克的关系及知识应用。

围绕这节课的内容,以新的教学理念作指导,结合课题的实验方向确立了如下教学目标:

1、学生认识克和千克,对1千克、几千克、1克、几克有一定的感知,理解克与千克的关系,能进行简单的质量计算。

2、继续培养自主探究、合作交流的学习方法、鼓励个性化的学习意识。

3、使学生充分体会到生活中处处有数学,培养学生的问题意识和解决问题的能力。

本节课的重点是对千克与克的认识并理解它们之间的关系,难点是对克的认识。为了更好地达到这些目标,在教学中采用了以下的教法和学法。

二、教法和学法教法:

这节课的教学对象是二年级学生,虽然他们已养成一定的学习习惯,但因年龄小,还是好动、好玩、好奇心强,根据这一特点,为了抓住他们的兴趣,激发他们的好奇心,教师在教学中以情境教学法为主,创设学生喜欢、熟悉的游戏情境、活动情境,让学生充分去感受、发现,获取新知,同时还采用启发式教学、直观教学等教学方法,为学生多样化的学习方式创造了良好基础。

学法:为了更好的突出学生的主体地位,体现并优化多样化学习方式,在学法上采用了让学生掂一掂、说一说、估一估、称一称等多种形式的活动,让学生积极动手、动口、动耳、动脑,在这种主动参与、自主探究、合作交流的过程中感悟新知。

三、教学环节本节课设计了三大教学环节:

一是游戏发现,激发探究欲;二是主动参与,探究新知;三是应用新知,升华体验。

1、游戏发现,激发探究欲

在这个环节中,创设了“背一背”这个游戏情境,让学生在游戏中去感受轻和重,然后揭示课题,目的在于利用熟悉的游戏情境,激发学生对本节课内容的亲切感,并营造出一种积极向上的学习氛围,为学生主动参与、自主探究新知打下坚实基础。

2、主动参与,探究新知

这个环节是本节课的重点,又是难点。所以分3步来实施:

第一步:认识千克。从学生已有的知识经验出发,引导学生找一找,掂一掂1千克的物品,再说一说1千克物品,“掂”是对“1千克”进行初步的感知,“说”是对“1千克”的进一步体验。接着对“三件视觉上具有一定反差的”物品掂一掂、估一估、评一评、称一称,还设计了让学生想办法找几千克的物品,然后轮流感受,等等,这些活动不仅仅一次次强化了学生对“1千克”的'体验,更是对学生合作学习方式的培养,是对学生自主探究程度、学生体验态度的一种信息反馈和检验。

第二步:认识克。克相对千克而言,没有那么直观,感觉也不会那么清晰。为了突破这一难点,在学生对千克有了一定认识的前提下,马上让学生掂一掂1克的物体,说出自己的感觉。目的是为了让学生在感觉上与千克形成明显的反差,对学生进行强烈刺激,使学生在脑海中克与千克形成鲜明对比,进而建立这两个质量单位的概念。为了使学生刚建立的概念得到进一步巩固,于是又设计了两道练习题。练习的目的除了巩固新知外也是学生自主探究、立思考、自我检查的一种深化。

第三步:认识千克与克的关系。试教时设计的是一道填空题:1粒扣子重1克,2粒重()克,100粒重()克,那么1000粒重()克,从而推出1000克=1千克。教出后发现这样设计给学生的铺垫太厚,没有思维度。后来把这一环节改为“由1粒扣子的质量直接到思考1000粒扣子有多重?”这样个富有挑战性的问题进一步激发了学生兴趣,学生学习兴趣很浓厚。对“克和千克”的换算公式,设计了教师读、学生听、学生读、大家评多种读的形式,使学生在读和评的过程中进一步理解克与千克的关系,并牢牢记在心中。

3、应用新知,升华体验

通过前面几个环节的教学,学生对新知有了不同程度的感知,为了使这些感性认识上升为理性认识,创设了两个问题情境:针对物品重量能提什么数学问题;怎样让气球载满物体顺利升空。

第一个问题情境的创设,使学生把新知和过去的学习经验相结合,提出不同程度的问题,可以极大地扩充训练容量,既培养了学生的问题意识,同时也是学生个性化学习方式的体现。第二个问题情境不仅拓宽了学生的知识面,并且把学生那种向往宇宙、向往太空的情感融入情境之中,充分调动学生的主动性,使学生的思维达到最活跃,情感达到最高潮,从而把本节课的感知、体验,在问题的解决过程中得以进一步升华。总之,本节课在设计上尽量遵循孩子们的认知规律,充分体现教育新理念,为孩子们的自主、立、合作、个性等多样化的学习方式营造了良好的氛围和机会。毕竟,我们还在实验、还在探索,所以教学中难免有一些不尽人意之处,敬请各位指出,以便大家一起讨论、研究。

9、六年级下册数学说课稿 圆柱的体积说课稿

一、说教材

1、教学内容

本节课是北师版小学六年级数学课本十二册第一单元第三课时。内容包括圆柱体的体积计算公式的推导和运用公式解决生活中的实际问题。

2、本节课在教材中所处的地位和作用

〈〈圆柱的体积〉〉是数学课程标准中“空间与图形”领域内容的一部分。〈〈圆柱的体积〉〉一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,而这节课的顺利学习将为以后圆锥体积的学习铺平道路。学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,但是学生还是喜欢用自己的方法解决问题,所以我给学生创设尽情展示自我的空间,通过自主的学习、合作探究、动手操作,让学生感知立体图形间的一些关系,从而解决生活当中常见的问题。制定以下三维教学目标:

3、教学目标

知士标:(1)通过经历圆柱体体积公式的推导过程,掌握圆柱的体积公式并能应用公式解决实际问题。

(2)通过操作让学生知道知识间的相互转化。

能力目标:倡导自主学习、小组合作、动手操作的学习方式,培养学生动手操作的能力,合作交流的意识。从而建立空间观念,培养学生的逻辑推理能力。

情感目标:让学生感受数学与生活的联系,体验探索数学奥秘的乐趣,培养学生学习数学的积极情感。

4、教学重点

由于小学生的思维以具体形象思维为主,要抽象出直观的立体图形,建立表象,形成初步的空间观念并不容易。圆柱的体积公式推导过程可以培养学生多方面的能力,是圆锥体积计算的基础。这个过程对学生是否真正理解圆柱体积公式起着至关重要的作用,所以,我根据〈新课程标准〉的思想要求和学生的实际知识基础确定了本节课的教学重点是:

(1)通过观察操作,使学生初步感知立体图形之间的关系,掌握圆柱体积公式的推导过程。并能应用公式解决实际问题。

(2)通过小组合作、交流,培养学生的合作意识。

5、教学难点

教学源于生活又应用于生活,但难的就是如何让学生学会用数学的眼光去发现生活中的数学问题,用数学思考和方法去分析和解决生活当中的问题。圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑思维能力,因此,我确定本课的难点是:推导圆柱体积计算公式的过程,学生逻辑思维能力的培养。

6、教具、学具准备:

本节课采用的教具为课件和学具。

二、说教学过程

数学〈〈课程目标〉〉明确指出:数学教学是数学活动的教学,是师生之间、学生之间互动与共同发展的过程。因此,在新课的教学当中,我设计了三个活动,让学生在活动中掌握圆柱体积计算公式的推导。

对本节课的教学,我设计了以下几个环节:

(一)情境导入,激发兴趣

活动一、猜一猜

出示一个圆体的实物和一个长方体的实物,猜猜它们的体积谁大一些?

在没有学习圆柱体体积的情况下,学生会猜①圆柱体积大一些。②长方体体积大些。③一样大。④我们必须通过动手验证才能知道谁大。由此揭示课题,今天来探索圆柱体的体积。

(这一活动的设计,激发了学生的学习兴趣,使学生为了验证自己的猜想而产生了强烈的求知欲望,从而进入最佳的学习状态。)

(二)师生互动,验证猜想

活动二:学生自由探索,圆柱体积计算方法

以小组为单位设计出一种自己学过的知识计算圆柱体积的方法,通过合作,学生想到的办法可能有:

①把橡皮泥捏成圆柱体,再捏成长方体,量出长方体的长、宽、高。算出长方体的体积,也就是圆柱的体积。

②把圆柱形的杯子装满沙子,铺平,然后把沙子倒入较大的长方体的盒子中,量出长方体盒子的长、宽及沙子的高,算出沙子的体积,也就是圆柱的体积。如果杯子的厚度忽略不计的话。杯子的容积就是杯子的体积。

③把一个圆柱体放到装有(正)长方体容器中,水会上升,上升的水的体积就是圆柱的体积。

(这一活动的设计,是通过观察力求让学生体验到我们在计算圆柱的体积时都是把圆柱的体积转化为其他形体的体积来进行计算的。由此,也就可以验证学生的猜想是否准确,但是为了不影响学生的求知欲,我设计了这样一个问题:你能用这些方法来计算我们的学校门口这根圆柱形柱子的体积吗?

活动三:通过教师演示,理解转化,掌握圆柱的体积的计算公式,在教学中我们尊重、欣赏学生用自己的方式去体验、探索学习的过程。也许会产生这样的矛盾,但正是这些矛盾激发了学生更加强烈的求知欲,由此我安排了学生利用手中的学具把圆柱体拼成一个近似的长方体,让学生观察长方体与正方体有那些密切的关系。再利用课件把圆柱体转化为长方体的过程演示一遍,使学生明白圆柱体转化成长方体时体积没有变化。长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,长方体的体积等于底面积乘高。所以,圆柱的体积也等于底面积乘高。

(活动三的设计是根据教材的特点、学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成操作——演示——观察——比较——归纳——推理的认识过程。让知识在观察、操作、比较中内化,实现由感性到理性、由具体到抽象,这种教学方法符合学生的认知规律,有助于突出重点,突破难点。)

三、知识的运用

算一算:已知一根柱子的底面半径0.4米,高5米,算出它的体积?

四、知识的拓展

你能算出鸡蛋的体积吗?

总之,我认为课堂教学在本质上是学生在教师的引导下主动参与、自主发现与探究、立思考和不断创新的过程,而不是简单、被动地接受教师和教材提供的现成的观点和结论。这也是诚如古罗马教育家普鲁塔克所说,儿童的心灵不是一个需要添满的罐子,而是一颗需要点燃的火种。因此。在课堂教学中,教师应积极创造条件,引导学生在主动的、探究的、体验的、建构的学习方式中,不断地实现自我超越和自我实现,获得多方面的满足和发展。

圆柱和圆锥单元学习学生易出现的问题:

1.圆柱的侧面积公式与圆柱的体积公式混淆。

圆柱的侧面积公式与圆柱的体积公式,前者是底面的周长×高,后者是底面的面积×高。学生学习了圆柱侧面积计算公式后,大部分学生都能利用圆柱侧面积计算公式进行计算。当学习圆柱的体积计算公式后,有一部分学生可能会与前公式混淆。

2.圆柱的体积公式与圆锥的体积公式混淆,

后者是前者的三分之一(在等底等高条件下),在教圆锥体积公式时,教师虽然用等底等高的圆柱和圆锥进行了演示,把倒满水的圆罪的水倒在圆柱里,刚好可倒三次,为了加强学生三次,也就是说圆锥的体积是圆满柱体积的三分之一的关系,我演示了三次,还邀请三位学生上台实验。但是在作业中也有一部分学生忘了三分之一。也许是课堂上学习的注意力集中在演示上,也许是我高估了学生,我以为通过这样的几次的实验,学生应该能行,对公式的就一带而过。后来学生们去完成课本及练习中的一些习题,通过这样几个课时下来,孩子们都能较好地掌握。

3.应用公式解决实际能力较差。

本单元的难点是解决等积变形的.应用题。例如:一个圆锥形麦堆,底面周长是25.12米,高2.1米,把这些小麦装入底面半径是2米的圆柱形粮囤正好装满,这个粮囤的高是多少?这是比较典型的等积变形题目,学生在处理这题时出现几种:第一种是思路不清,不知道要先求什么(圆锥的底面半径),再求什么(圆锥的体积),接着求什么,(圆柱的底面积),最后求什么(圆柱的高)。第二种是利用公式混乱,上题中牵连到圆的周长、圆锥的体积、圆的面积、圆柱的体积公式。第三种是计算、书写粗心,因为这一题计算繁多,步骤复杂,学生在书写时往往会眼花看错。

在圆柱和圆锥的体积教学目标中,都要求让学生经历“类比猜想—验证说明”的探索其体积计算方法的过程,教材这样要求是基于什么考虑?

我们以圆柱体积的内容安排为例。教材安排了探索圆柱体积计算方法的内容,引导学生经历“类比猜想—验证说明”的探索过程,体会类比、转化等数学思想方法。教材先呈现了“类比猜想”的过程,由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算方法也可能是“底面积×高”。在形成猜想后,教材又引导学生“验证说明”自己的猜想,教材中呈现了两种“验证说明”的方法:一种是用硬币堆成一堆,用堆的过程来说明“底面积×高”计算圆柱体积的道理,这实际上是“积分”思想的渗透;另一种方法是转化思想的渗透,即把圆柱通过“切、拼”转化为长方体,再根据长方体体积的计算方法推导出圆柱体积的计算方法。

要求让学生经历“类比猜想—验证说明”的探索其体积计算方法的过程,首先在于这种过程的重要性。数学发现通常都是在通过类比、归纳等探测性方法进行探测的基础上,获得对有关问题的结论或解决方法的猜想,然后再设法证明或否定猜想,进而达到解决问题的目的.类比、归纳是获得猜想的两个重要的方法.类比是一种合情推理的方式,运用归纳、类比可以帮助人们猜想出结论。当然,通过合情推理得到的猜想还需要进一步证明。在小学阶段不要求给出严格的证明,学生只要能够从不同角度说明其合理性即可,也就是验证说明。

圆柱和圆锥的体积与已学习过的长方体和正方体的体积存在诸多相似点,为实施类比提供了可能。所谓类比,就是由两个对象的某些相同或相似的性质,推断它们在其他性质上也有可能相同或相似的一种推理形式。运用类比法的关键是寻找一个合适的类比对象.在学习长方体和正方体的体积时,学生已经初步理解了体积和容积的含义,掌握了长方体和正方体的体积计算方法,这些知识都是学习圆柱体积的基础,特别是长方体和正方体的体积计算公式“底面积×高”对探索圆柱的体积计算方法有正迁移作用。这就使得圆柱和圆锥的体积学习有了合适的类比对象或者说是类比的基础。

由于圆柱和长方体都是直柱体,长方体的体积可以用“底面积×高”计算,因而我们可以类比猜想圆柱的体积是否也可以用“底面积×高”计算。这是由两个对象的某些相同或相似的性质,推断它们在其他性质上也有可能相同或相似的一种推理形式。同样,圆柱与圆锥体积之间,我们也可做出相近的猜想。

10、数学五年级下册说课稿 分数的基本性质说课稿

一、说教材分析

《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。

二、说教学目标

根据教材分析制定如下的教学目标:

知识与技能:

1、使让学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

2、培养学生观察、分析和抽象概括能力。

过程与方法:

1、让学生经历分数基本性质的探究过程。

2、通过引导启发,帮助学生学会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数的方法。

情感态度与价值观:

1、体验合作探究的乐趣,培养学生的团结协作精神。

2、渗透“事物间相互联系”的辩证唯物主义观点。

教学重点:理解分数基本性质。

教学难点:归纳分数的基本性质,并运用性质转化分数。

教具教学准备:

多媒体课件,小棒、纸条、圆形纸片

三、说教学策略

为了营造学生在教学活动中的立、自主的学习空间,让学生成为课堂的主人,本着“将课堂还给学生,让课堂焕发生命活力”的指导思想,根据学生的认知规律,我采取以下教学策略:

1、采用了创设情境、引导探究、引导自学、组织讨论、组织练习等教学策略。

2、实际操作:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促进学生的感性认识逐步理性化。

3、引导概括:先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。

4、新课标指出:有效的数学学习活动,不能单纯模仿与记忆。动手实践、自主探索与合作交流是本节课学生学习的重要方式。

四、说教学流程

结合五年级学生的理解能力和年龄特征,我将本课的教学设计为六个环节。

(一)、创设情境,引发猜想

首先我为学生带来一个《猴王分饼》的故事。

猴山上的小猴子最喜欢吃猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴子吃。它先把第一块饼平均切成4块,分给猴1一块;猴2见了说:“太少了,我要2块。”猴王又把第二块饼平均切成8块,分给猴2两块;猴3更贪,它抢着说:“我要3块,我要3块……”猴王又把第三块饼平均切成12块,分给猴3两。小朋友,你知道哪只猴子分得的饼多吗?

“同学们,你们认为猴王分得公平吗?”引发学生的猜想。

(这样就激发了学生的学习兴趣,为后面的学习做好了铺垫。)

(二)自主探索,寻找规律

(下面这个环节是课堂教学的中心环节,新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。)

1、小组合作验证猜想

这只是大家的猜想,究竟哪只猴子分得的饼多呢?亲自分一分,验证你们的猜想。

学生操作验证---集体汇报交流----展示成果

2、既然三只小猴分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?

学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。

3、猴王把三张大小一样的饼分给小猴一部分后,剩下的部分大小相等吗?通过观察演示得出3/4=6/8=9/12

4、我们班有名同学,分成了四组,每组16人。那么,第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出1/2=2/4=32/

(三)比较归纳揭示规律

1、出示思考题

1/4=2/8=3/12

比较每组分数的分子和分母:

从左往右看,是按照什么规律变化的?

从右往左看,又是按照什么规律变化的?

通过观察,你发现了什么?

让学生带着上面的思考题,先立思考,后小组讨论、交流。

2、集体交流,归纳性质。

3、师生共同总结规律,找出性质中的关键词,然后齐读,注意关键的字词要重读。

4、现在,大家知道猴王是运用什么性质分饼了吗?

5、沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。

(这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间是相互联系”的辨证唯物主义观点)

(四)自学例2

1、自学例2。

2/3 = 2×()/3×4 =()/12

10/24 = 10()/24 ( ) = ( )/12

2、展示交流:重点让学生说说分母、分子是如何变化的`?根据什么?

这样设计的目的是学生学会的老师不包办,从而培养了学生的自学能力。

(五)多层练习巩固深化

1、填上合适的数,说说你填写的根据

1/3 =()/6 10/15 =()/3 1/4 = 5/()

我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。

2、说一说下面各式运用分数的基本性质是否正确

5/24=5×2/24÷2=10/12()

4/9=4÷2/9÷3=2/3()

13/18=13+2/18+2=15/20()

在这我设计了同学们在平时做题中容易混淆的问题,提醒同学们今后要注意。

3、想一想:(选择你喜欢的一道题来做)

与1/2相等的分数有多少个?想像一下把手中的正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?

9/24和20/32哪一个数大一些,你能讲出判断的依据吗?

在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。

(六)本课小结

同学们,通过这节课,你有哪些收获?

学生在交流收获的过程中,培养学生的知识概括能力。

五、说教学评价

1、教学过程中采用自我、小组、集体等多种评价方式,激发起学生交流的兴趣。

2、多媒体课件的应用,创设生动的教学情境。

3、学生在发现、体验、合作、交流、归纳、总结中,自主参与整个学习过程,营造立、自主的学习空间,学生成为课堂的主人。

11、七年级数学下册《不等式的性质》说课稿

七年级数学下册《不等式的性质》说课稿范文

作为一位杰出的老师,有必要进行细致的说课稿准备工作,借助说课稿可以提高教学质量,取得良好的教学效果。那么应当如何写说课稿呢?以下是小编为大家整理的《不等式的性质》七年级数学下册说课稿,仅供参考,欢迎大家阅读。

今天,我说课的题目是鲁教版义务课程标准实验教科书七年级下第十一章第二节《不等式的基本性质》,主要从以下几个方面进行说课:教材分析,教法分析,学法指导,教学过程设计,教学评价。

一、教材分析

本节课主要研究不等式的性质和简单应用.它是进一步学习一元一次不等式的基础.它与前面学过的等式性质有联系也有区别,为渗透类比,分类讨论的数学思想提供了很好的素材.这节课在整个教材中起承上启下的作用.它是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。

结合本节课的地位和作用,设计本节课的教学目标如下:

1、知士标:

(1)探索并掌握不等式的基本性质,能解简单的不等式;

(2)理解不等式与等式性质的联系与区别;

2、能力目标:

(1)通过不等式性质的探索,培养学生的观察,猜想,分析,归纳,概括的逻辑思维能力:

(2)通过探索过程,渗透类比,分类讨论的数学思想;

3、情感目标:

(1)培养学生的钻研精神,同时加强同学间的合作与交流;

(2)让学生获得亲自参与探索研究的情感体验,从而增强学习数学的热情,

(3)通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

结合本节课的教学目标,确定本节课的

重点是不等式性质及简单应用.

难点是不等式性质的探索过程及性质3的应用.

为了突出重点,突破难点:采用实物投影仪展示学生不同层次的思维探索过程,化抽象为具体;用类比,对比的方法化生疏为熟悉,化零散为系统.

二、教法分析,教学手段的选择:

为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即采取观察猜测---直观验证---推理证明---得出性质。在知识的发生发展中渗透类比,分类讨论的数学思想,学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性.为了突破学生对不等式性质3,理解的困难,采取了类比作化抽象为具体的方法来设置教学。

三、学法指导:

由于七年级学生有比较强的好奇心,好胜心以及显示欲.同时经过一年初中数学的思维锻炼,已经初步具备了提出问题,分析问题和解决问题的能力,基于学生的以上心理特点及认知水平,所以采取动手实践,自主探索,合作交流的学习方法.这样可以使学生积极参与教学过程.在教学过程中展开思维,进一步培养学生提出问题,分析问题,解决问题的能力,进一步理解类比,分类讨论等数学思想.

四、教学过程设计

基于以上教材分析,紧紧围绕本节课的教学目标,从学生的认知水平出发进行如下的教学设计:

1.创设情境,类比猜想

提出问题:今年我比你大10岁,5年后,我比你大还是比你小,大几岁,小几岁?

2年前,我比你大还是比你小,大几岁,小几岁?

类比等式的性质1,不等式有类似的性质吗?

【设计意图】通过一些生活实例启发学生思考,猜想不等式的性质1

2、举例说明,验证结论

设计小活动:你说我验

同桌合作,举几个例子,可以是数字例子,也可以是生活当中的例子。相互验证一下你猜想的是否正确

【设计意图】通过这个活动旨在增强教学的有效性,一方面增强学生间的合作意识,另一方面增强学生思考的严谨性。活跃课堂气氛,掀起课堂的一个小高潮。

学生总结,教师板书,以及注意引导学生理解“同一个整式”的含义。

3、类比等式的性质2,使学生发现问题:不等式是否有类似的性质

不等式的性质2,3是这一节的重点、难点,在这个知识点的处理上,完全放手给学生,让学生自己发现,不等号没变,在什么情况下不变?不等号发生了改变,在什么情况下发生了改变?让学生自己的思维发生碰撞,再套用乘以或除以一个数已经不能满足需要了,因此,必须分成正数和负数两种情况。这种分类不是老师硬塞给学生的,而是水到渠成的。让学生再举几例试试,发现有没有类似的结论。

【教法说明】为了突破学生对不等式性质3理解的困难,根据学生的认知规律采取化抽象为具体的方法来设计教学过程。为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即观察猜测---直观验证---得出性质,突出时间、结果和体验学生有效学习的三个重要指标,教学过程应该成为学生的一种愉悦的情绪生活和积极的.情感体验。基于此,改变以往给学生画好框架,让学生跟着老师的思路走的教学模式,大胆放手给学生,从而培养学生的能力。这种方式能再次掀起小高潮。让学生各有所获,从不懂到懂,从少知到多知,从不会到会,从不能到能。学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性.

师生活动:由学生概括总结不等式的性质2,3,同时教师板书.

4、例题讲解,探究新知

例1将下列不等式化成“xa”或“xa”的形式

(1)x-5-1(2)-2x3

解:(1)根据不等式的基本性质1,两边都加上5,得x-1+5即x4

(2)根据不等式的基本性质3,两边都除以-2,得X-3/2

【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.

【设计意图】应用性质精讲精练,对不等式进行变形,加强对不等式性质的理解,规范书写格式

例2:对习题1进行适当的改编:已知ab,填空并连线:

(1)a-3____b-3根据不等式的性质1

(2)6a____6b根据不等式的性质2

(3)-a_____-b根据不等式的性质3

(4)a-b____0

教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.

注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力

5、小试牛刀:断正误,正确的打“√”,错误的打“×”

①∵∴( ) ②∵∴( )

③∵∴( ) ④若,则∴,( )

学生活动:一名学生说出答案,其他学生判断正误.

答案:①√ ②× ③√ ④×

【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错

6、拓展思维,培养能力

比较2a与a的大小

【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。

7、分层布置作业必做题:b,填空并连线:(1)a-3____b-3根据不等式的性质1

(2)6a____6b根据不等式的性质2

(3)-a_____-b根据不等式的性质3

(4)a-b____0

教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力5、小试牛刀:断正误,正确的打“√”,错误的打“×”①∵∴( ) ②∵∴( )③∵∴( ) ④若,则∴,( )学生活动:一名学生说出答案,其他学生判断正误.答案:①√ ②× ③√ ④×

【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错6、拓展思维,培养能力比较2a与a的大小

【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。

12、《不等式的性质》七年级数学下册说课稿

尊敬的各位领导、各位老师:

下午好!

今天,我说课的题目是鲁教版义务课程标准实验教科书七年级下第十一章第二节《不等式的基本性质》,主要从以下几个方面进行说课:教材分析,教法分析,学法指导,教学过程设计,教学评价.

一,教材分析

本节课主要研究不等式的性质和简单应用.它是进一步学习一元一次不等式的基础.它与前面学过的等式性质有联系也有区别,为渗透类比,分类讨论的数学思想提供了很好的素材.这节课在整个教材中起承上启下的作用.它是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。

结合本节课的地位和作用,设计本节课的教学目标如下:

1、知士标:

(1)探索并掌握不等式的基本性质,能解简单的不等式;

(2)理解不等式与等式性质的联系与区别;

2、能力目标:

(1)通过不等式性质的探索,培养学生的观察,猜想,分析,归纳,概括的逻辑思维能力:

(2)通过探索过程,渗透类比,分类讨论的数学思想;

3、情感目标:

(1)培养学生的钻研精神,同时加强同学间的合作与交流;

(2)让学生获得亲自参与探索研究的情感体验,从而增强学习数学的热情,

(3)通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

结合本节课的教学目标,确定本节课的

重点是不等式性质及简单应用.

难点是不等式性质的探索过程及性质3的应用.

为了突出重点,突破难点:采用实物投影仪展示学生不同层次的思维探索过程,化抽象为具体;用类比,对比的方法化生疏为熟悉,化零散为系统.

二、教法分析,教学手段的选择:

为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即采取观察猜测---直观验证---推理证明---得出性质。在知识的发生发展中渗透类比,分类讨论的数学思想,学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性.为了突破学生对不等式性质3,理解的困难,采取了类比作化抽象为具体的方法来设置教学。

三、学法指导:

由于七年级学生有比较强的好奇心,好胜心以及显示欲.同时经过一年初中数学的思维锻炼,已经初步具备了提出问题,分析问题和解决问题的能力,基于学生的以上心理特点及认知水平,所以采取动手实践,自主探索,合作交流的学习方法.这样可以使学生积极参与教学过程.在教学过程中展开思维,进一步培养学生提出问题,分析问题,解决问题的能力,进一步理解类比,分类讨论等数学思想.

四、教学过程设计

基于以上教材分析,紧紧围绕本节课的教学目标,从学生的认知水平出发进行如下的'教学设计:

1.创设情境,类比猜想

提出问题:今年我比你大10岁,5年后,我比你大还是比你小,大几岁,小几岁?

2年前,我比你大还是比你小,大几岁,小几岁?

类比等式的性质1,不等式有类似的性质吗?

【设计意图】通过一些生活实例启发学生思考,猜想不等式的性质1

2、举例说明,验证结论

设计小活动:你说我验

同桌合作,举几个例子,可以是数字例子,也可以是生活当中的例子。相互验证一下你猜想的是否正确

【设计意图】通过这个活动旨在增强教学的有效性,一方面增强学生间的合作意识,另一方面增强学生思考的严谨性。活跃课堂气氛,掀起课堂的一个小高潮。

学生总结,教师板书,以及注意引导学生理解“同一个整式”的含义。

3、类比等式的性质2,使学生发现问题:不等式是否有类似的性质

不等式的性质2,3是这一节的重点、难点,在这个知识点的处理上,完全放手给学生,让学生自己发现,不等号没变,在什么情况下不变?不等号发生了改变,在什么情况下发生了改变?让学生自己的思维发生碰撞,再套用乘以或除以一个数已经不能满足需要了,因此,必须分成正数和负数两种情况。这种分类不是老师硬塞给学生的,而是水到渠成的。让学生再举几例试试,发现有没有类似的结论。

【教法说明】为了突破学生对不等式性质3理解的困难,根据学生的认知规律采取化抽象为具体的方法来设计教学过程。为了体现以学生

为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即观察猜测---直观验证---得出性质,突出时间、结果和体验学生有效学习的三个重要指标,教学过程应该成为学生的一种愉悦的情绪生活和积极的情感体验。基于此,改变以往给学生画好框架,让学生跟着老师的思路走的教学模式,大胆放手给学生,从而培养学生的能力。这种方式能再次掀起小高潮。让学生各有所获,从不懂到懂,从少知到多知,从不会到会,从不能到能。学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性.

师生活动:由学生概括总结不等式的性质2,3,同时教师板书.

4、例题讲解,探究新知

例1将下列不等式化成“xa”或“xa”的形式

(1)x-5-1(2)-2x3

解:(1)根据不等式的基本性质1,两边都加上5,得x-1+5即x4

(2)根据不等式的基本性质3,两边都除以-2,得X-3/2

【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.

【设计意图】应用性质精讲精练,对不等式进行变形,加强对不等式性质的理解,规范书写格式

例2:对习题1进行适当的改编:已知ab,填空并连线:

(1)a-3____b-3根据不等式的性质1

(2)6a____6b根据不等式的性质2

(3)-a_____-b根据不等式的性质3

(4)a-b____0

教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.

注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力

5、小试牛刀:断正误,正确的打“√”,错误的打“×”

①∵∴( ) ②∵∴( )

③∵∴( ) ④若,则∴,( )

学生活动:一名学生说出答案,其他学生判断正误.

答案:①√ ②× ③√ ④×

【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错

6、拓展思维,培养能力

比较2a与a的大小

【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。

7、分层布置作业必做题:b,填空并连线:(1)a-3____b-3根据不等式的性质1

(2)6a____6b根据不等式的性质2

(3)-a_____-b根据不等式的性质3

(4)a-b____0

教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力5、小试牛刀:断正误,正确的打“√”,错误的打“×”①∵∴( ) ②∵∴( )③∵∴( ) ④若,则∴,( )学生活动:一名学生说出答案,其他学生判断正误.答案:①√ ②× ③√ ④×

【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错6、拓展思维,培养能力比较2a与a的大小

【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。

13、七年级数学下册简单的轴对称图形说课稿

一、把握课标说教材

(一)教材所处的地位及作用

本节课是在学生感受了现实生活中的轴对称图形,探索并体验了轴对称图形的特征的'基础上进一步认识简单的轴对称图形——线段,主要学习线段的轴对称性,线段的垂直平分线定义及性质。既是对前面知识的深化和应用,又是后续画图形的对称轴和画轴对称图形的基础,还是今后探究等腰三角形、矩形、菱形、正方形等轴对称图形的性质的预备知识和方法指导。因此处于非常重要的位置,起到承前启后的作用。

(二)教学目标

1、知识与能力

知道线段是轴对称图形;掌握线段的垂直平分线定义及性质,学会应用线段垂直平分线的性质进行简单的计算和说理。

2、过程与方法

经历探索线段垂直平分线定义及性质的过程,体会数学活动充满了探索性和挑战性。

3、情感态度与价值观

经过自主探索和合作交流,敢于发表自己的观点,品尝发现的快乐,感受轴对称的对称美。

(三)教学重点和难点

由于线段是组成几何图形的基本元素,线段的垂直平分线定义又是画图形的对称轴和画轴对称图形的基础,加之线段的垂直平分线性质在几何图形和实践问题中应用较为广泛,因此本节课的教学重点是线段的垂直平分线定义及性质。难点是运用线段垂直平分线性质解决实践问题。

突破方式:

1、通过设计问题情境,激发学生求知欲。

2、让学生亲自动手操作,参与知识形成过程,深化对知识的理解。

二、促进发展说教法

著名教育家布鲁纳说“探索是数学教学的生命线”,我结合学生心理发展特点及认识水平,充分体现教师是教学活动的组织者,引导者,合作者,学生才是学习的主体。基本的教学程序是:由“创设情境——活动探究——实践应用——课堂小结”四部分组成。在此程序中我将采用:情景与直观演示教学法,讨论法、练习法。

三、提高能力说学法

我将遵循学生的认知规律,充分发挥教师引导和学生认识活动的主体作用,通过多媒体演示、实物图例等实践活动充分调动学生积极性,给以学生动手、动脑的机会,变被动学习为主动学习,启导学生通过猜想、实验、讨论、分析出线段的对称轴特征,以及线段的对称轴上的点到线段两端点距离相等这一性质,以求学生通过实践活动深化知识,进一步理解所学知识。

四、优化组合说流程

课前准备:透明纸片、三角板、量角器、导学案

(一)创设情境,导入新课

1、欣赏:多媒体导入具有实际意义的轴对称现象。

2、体验:用纸片展示线段,观察它是不是轴对称图形。

(设计意图:通过对图片的展示,吸引学生的注意力,帮助学生复习旧知识,为本节课的知识做铺垫。同时也让学生的思维由静止状态转入活动状态。)

(二) 教师引导,探究新知

自主探究:线段的垂直平分线概念(全体活动)

1、动手操作:设计方案找线段的另一条对称轴。

2、讨论:观察对称轴与线段的位置关系。

3、明晰(多媒体展示学生们的发现):线段的垂直平分线概念。

引导探究:探究线段的垂直平分线性质(小组活动)。

1、动手操作(投影展示步骤):

(1)在线段AB的垂直平分线CD上任取一点P;(2)连接PA,PB。

2、讨论:在操作过程中,比较线段PA,PB。

3、明晰(多媒体展示学生们的发现):线段的垂直平分线性质。

(设计意图:本环节发挥教师的主导作用,设计困难,以疑促思,引导学生积极参加到探讨线段的垂直平分线定义及性质这一活动中来,锻炼学生主动学习的习惯,培养学生观察、想象思维和概括能力。)

(三)讲练结合,巩固提高

第一组:巩固训练

填空:

1、如图,若AO BO,EF AB,则直线EF是线段 的垂直平分线。

2、如图,已知直线CD垂直平分AB,则 _____ 。

3、如图,△ABC中,AD垂直平分边BC,AB=5,那么AC= 。

(设计意图:这三道小题都是对刚学过的重点知识进行数学化语言的组织,让学生加深印象,体会数学语言的严谨性。)

第二组:强化训练

例1:如右图所示,△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E、D,BE=6,求△BCE的周长。

变式演习:

1、已知:如图,在△ABC中,BC边上的垂直平分线DE交BC于点D,交 AC于点E,AC=8 cm,△ABE的周长是14 cm,求:AB的长。

2、如右图所示,直线MN和DE分别是线段 AB、BC的垂直平分线,它们交于P点,请问PA和 PC相等吗?为什么?

解:连接BP

∵ MN垂直平分线段AB( 已知 )

∴ AP=BP ( )

(设计意图:意在让学生掌握本节课的知识和训练解题格式。)

第三组:拓展延伸

1、上罗中学和上罗一小计划在村公路上共同设一个心理咨询 中心,如图,A处是上罗中学,B处是上罗一小,直线L表示村公路,应在村公路L的何处设心理咨询中心,才能使心理咨询中心P到两校的长度相等?

2、随着我国经济、教育的发展,学前教育已经纳入九年制义务教育范围,为了让小朋友们能更方便的上学,上罗镇计划以三个村为一个范围建公立幼儿园,如图,A、B、C表示三个村的地理位置,问:幼儿园建在何处,才能使得到三个村的距离相等?请你作出幼儿园的位置(用P表示)。

(设计意图:这组题是针对本节课的难点设计的,设计为与学生们生活紧密相关的实践问题,让学生们自己当一会设计师,体验数学知识的应用价值。本组题的教法是:组内讨论,各组推选一名上台展示。)

(总设计意图:三组题型,从三个面,全方位的覆盖了本节课的重难点,意在让学生主动探索、讨论、提出质疑,并解决问题。教师从旁参与讨论,有针对性的启发和指导,鼓励他们提出疑问,鼓励他们团结合作,进而培养学生的创新意识与创新能力。)

(四)总结归纳,强化体系

1、引导学生从这节课“学了什么”、“如何学”、“为什么学”这几个方面进行反思。

(设计意图:让学生系统掌握本节课的知识点,培养学生的总结能力,感受数学的应用价值。)

2、作业布置:练习题第2题、习题10。2第3题。

(设计意图:巩固所学知识,强化知识体系。)

五、归纳总结说设计

本节课设计以新课改理念出发,进行教师主导,学生主体教学的探索,让学生去发现问题、解决问题。在探讨的过程中遵循从直观感知到理性认识的认知规律,循序渐进,引导学生深入探究问题的本质,尊重学生的个人体验,在活动中感悟数学知识的价值。

14、七年级数学下册简单的轴对称图形说课稿

一、授课内容的数学本质与教学目标定位

教学内容:

本节课是北师大版教材七年级(下)第七章《生活中的轴对称》第二节“简单的轴对称图形”的第一课时。主要内容是经历探索简单图形轴对称性的过程,进一步体验轴对称图形的特征,并由此探索了解角平分线的有关性质,应用角平分线的性质解决一些简单问题。

教学目标:

●知识与技能:

(1)进一步认识轴对称图形的特点,认识角是轴对称图形;

(2)探索并了解角平分线的有关性质;

(3)能应用角平分线的性质解决一些简单的问题。

●过程与方法:

(1)在探索角平分线性质的过程中,培养学生观察、思考、分析和概括的能力;

(2)在动手操作的活动中,通过说理,培养学生运用数学语言进行表述的能力;

(3)通过学习进一步理解由“特殊”到“ 一般”的数学思想。

●情感与态度:

(1)通过轴对称图形的教学进行审美教育,让学生充分感受数学美,从而激发学生热爱数学的情感;

(2)通过探究活动培养学生团结协作的精神。

二、教材的地位及作用

本节教材是在学生对轴对称现象有了一定认识,能够识别简单的轴对称图形及其对称轴的基础上,经历探索的过程,掌握角平分线的有关性质,为以后学习其他轴对称图形(矩形、正方形、菱形等)知识奠定必要的基础。

三、教学诊断分析

1、在学习有关角的对称轴是角平分线所在直线的时候,学生常常将角平分线理解成角的对称轴,因此,在本节课的教学过程中作了特别强调。

2、运用角平分线的性质解决问题时,学生常常会运用全等将角平分线的性质再证明一次,而没有直接使用角平分线的性质,简化证明过程,因此,在本节课通过例题及巩固练习,加深学生对角平分线性质的运用。

四、教学设计说明

1、根据新课程课堂教学理念“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验” 。

本节课的设计遵循了这一理念,注意通过折纸等丰富多彩的活动激发学生学习本课的积极性,注意让学生动手操作实践,在操作中进行自主探索和生生、师生互动交流,从而使学生能很好地掌握角平分线的性质,并获得用折纸这样的操作发现法探究图形性质的活动经验。

2、在本节课的教材内容处理上,既注意了教材是最基本的课程资源,它是满足所有七年级学生最基本的知授容,又注意了我校学生的实际情况(学生比较优秀),因此,本节课突出了课程资源的开发,即对原有例题作了补充(如例2),又增加了反馈练习活动,让学生在议练中学会运用角平分线性质解决问题,同时还进行了思维拓展,这样充分体现了让不同的学生“在数学上得到不同的发展”的数学课程基本理念。

3、本节课在教法上选用了“探究——发现”教学模式,这是基于本节课的知授容,有实践背景,适用于让学生动手操作探究。因此本节课在教学活动设计中,注意突出学生活动,设置了四个活动:

①动手活动:通过动手度量、折纸等活动,探索角平分线的性质;

②表述活动:用文字语言、图形语言、符号语言表述角平分线的性质,并互动说理证明;

③应用活动:角平分线的性质的认识及应用;

④拓展活动:结合本节课的知识,对线段的轴对称性进行探索。

4、教材中只给出了角平分线的性质的文字语言叙述,并没有给出符号语言的表述,由于我校的学生在第二章、第五章学习时,已经接触了符号语言的叙述,并且能够进行简单的说理,因此在这里,我引导学生将文字语言结合图形语言转化为符号语言,并且对性质进行了说理,同时在对性质说理以及例1的解答中,教师都给出了规范的说理过程,这样既符合学生的实际学习情况,又为后面学习证明(一)、(二)、(三)打下基础。

5、评价方式

根据课标的评价理念,教学中我关注了学生在学习过程中是否积极参与教学活动,是否能在教师的引导下进行说理,是否能应用所学知蚀解决实际问题,并注意在教学过程中给予学生适当的评价和鼓励。

15、浙教版数学七年级下册说课稿 旋转变换

各位老师:

你们好!

今天我说课的内容是浙教版七年级下册第二章第四节旋转变换。下面,我根据我校学生的情况分七个方面对本课的设计向大家说明。

一、教材分析

1、教材所处的地位和作用

本节教材是本章第四节内容,从知识结构上讲,本节内容是在学习了三角形的全等的基础上学习的,是继轴对称变换、平移变换的又一基本图形变换,也为今后研究其他具有对称性质的图形及几何变换奠定基础,起着承上启下的作用。因此它既是数学上的一个重要基础知识又是重要的数学思想方法,是培养学生思维能力,树立变化观点的良好素材。它和轴对称、平移这三种变换既是本章的重点也是本章的难点。

2、教学重点与难点

(1)教学重点:分析研究旋转现象,抽象概括出旋转的概念,探索发现旋转的性质。

(2)教学难点:由于旋转较前面的轴对称变换和平移变换对学生在观察图形和空间能力想象有进一步的高要求,学生对旋转变换的理解有一定的难度,因此本节俘是本节教学的难点。

3、突破难点的关键

(1)设置恰当情景,激发学生的探索欲望。

(2)通过演示操作及运用类比的方法,归纳出旋转变换的性质,加深旋转变换的三要素的理解。

二、学生情况分析

在学本节内容之前学生已经学习了两种变换,对图形的运动有一个初步的了解,因此对本节内容比较容易接收,但初一学生的想象比较单纯,空间想象能力较弱,对概念的理解能力不强,观察、分析、认识问题的能力也比较弱,而且旋转变换较前两种变换复杂、要求也高。所以在下面的几个环节设计中都要考虑到这一情况。

三、课程目标分析

在分析初一学生的思维特点和教材的知识基础后,依据数学课程标准,确定本课时的教学目标为:

1、通过实例认识旋转变换,经历探索,发现旋转变换的性质。

2、经历学习活动,学会交流合作及立探究。

3、会按要求作出简单平面图形经旋转变换后的图形。

4、培养学生初步掌握应用旋转变换解决数学问题的能力。

5、进一步培养学生观察、分析、概括、试验等方面的能力。

四、教法分析

鉴于初一学生思维的具体、直观、形象的特点,所以在概念教学中以生活实例为背景,从具体事实上抽象出旋转变换的概念。为了突破难点,选用情景探索、类比、发现的教学模式,通过直观教学加强对学生直觉的培养。在教学过程中以问题方式启发学生,以生动的实例吸引和启发学生,在整个教学中采取情景教学法。在教学手段上,充分利用电脑多媒体优化数学课堂教学。

五、学法指导

根据本节课的内容特点及学生的实际水平,在学法上,我以实际问题为出发点、以学生活动为主线,引导学生采取自主探索与互相交流结合的方法,尽量让每一位学生参与研究,最终让他们在学习中学会学习。

六、过程分析

(一)创设情景,提出问题.

为了使导入生动形象,使学生关注概念的实际背景,借助多媒体展示一组图片:(1)升红旗的过程;(2)飞舞的蝴蝶;(3)大风车的转动等等。通过以下几个问题:你能从这些在做各种运动的图片中找出哪些是我们学过的吗?它们各具有哪些特点?有没有跟这两种运动不一样的运动?来引入课题。实现了复习前面学过的内容,同时也让学生认识到物体除了轴对称、平移这两种运动外还有另外一种运动——旋转运动,也让学生感受到今天要学习的内容(旋转变换)来源于物体的旋转运动。又为了下面对三种变换做一个比较做好准备。

(二)合作交流,探索问题

旋转变换的概念是本节课的重点之一。教学时显示日常生活中物体的旋转现象的图片,设计如下几个提问:(1)风车是怎样在转动?转动有规律吗?你能用自己的语言把风车的转动的过程描述出来吗?这些物体在转动的过程中具有哪些共同的特点?来引导学生观察、分析,在合作学习充分讨论的基础上概括得出旋转变换的有关概念(旋转变换、旋转中心、旋转角度)和旋转变换的条件:绕一个固定点,按同一方向(顺时针或逆时针),转动(指做圆周运动)同一个角度。让学生充分认识到物体旋转运动的特点:物体的各部分旋转的方向和角度都相同,到旋转中心的距离保持不变。

本环节的意图是突出重点。通过形象、直观的动态演示,突出了运动的观点和概念的形成过程,有利于学生认清概念的本质。

(三)应用新知,体验成功

1、为了使学生加深对旋转变换概念的掌握和理解,充分利用教材中P53的“做一做”第1小题,并提出设问:要回答这个问题,你准备从哪方面入手?要讲清楚这个运动过程,你觉的要抓住哪些要点?学生讨论。并通过几个练习加以说明。(这几个练习题的设计的思路是:要旋转的图形只告诉你的是三要素中的其中两个要素,问这样的像能画成功吗?)用意是强调三要素是缺一不可的。

“做一做”1、如图,经过怎样的`旋转变换,可由射线OP得到射线OQ?

2、引导学生归纳出要叙述一个旋转变换必须写全旋转的三个要素:旋转中心、旋转方向和旋转角度。然后补充几个练习加以巩固。(学件三)

3、并再次设问:经旋转变换所得图形和原图形的形状和大小有没有发生变化?全等吗?从而得出旋转变换的性质之一(旋转变换不改变图形的形状和大小),经旋转变换所得图形和原图形是全等的。

这一环节设计的意图是:理解巩固概念,在理解巩固概念的同时进一步揭示概念的实质,得出性质。

(四)讲练结合,巩固提高

1、为了加深学生对概念的理解并能进行初步的应用,讲解例题。由师生共同分析,引导学生采取多种策略完成本题,(这个例题是本节课的难点,运用类比的方法,可以先让学生回忆三角形的平移变换做法,由此联想到本例是否也可从几个关键点着手呢?利用事先准备好的三角形模型进行旋转,给学生一个大概的位置印象。然后多媒体展示,让学生观察点旋转变换和线段的旋转变换(学件二),从中直观形象地找出作旋转变换后的像的方法。)并通过示范性板书,提高学生的作图能力和几何语言的表达能力。

例、如图,O是外一点。以点O为旋转中心,将按

逆时针方向旋转80°,作出旋转变换后的像。

解:如图。

(1)、以点O为旋转中心,分别把点A,B,C按逆时针方向旋转80°,

得点、、.

(2)连结,,。

就是所求作得旋转变换后得像。

2、为了确保学生对所学的知识的掌握,设计几组巩固、反馈练习。

练习题组一:

(1)在例题的基础上,旋转角度改为180°。

(2)教材中的课内练习P541、2。

这是一组基本型的练习题,及时根据学生练习的信息反馈作出诊断。

练习题组二:

(1)再在例题的基础上,把旋转中心的位置改在图形内部。

(2)把例题中的三角形改为四边形,旋转中心为某一顶点。

这组题是在上一组题的基础上的一个提高。通过本例和练习题组二总结出旋转变换的作图方法以及旋转变换的性质之二。(性质:对应点到旋转中心的距离相等。对应点与旋转中心连线所成的角度等于旋转角度。作图方法:可以先将图形上得某些点作旋转变换,然后根据旋转变换不改变图形的形状、大小,以及点线之间的位置关系等性质,作出原图形的像))

练习题组三:

利用性质来解决一些问题。(补充练习)

补充这个练习,可进一步巩固所学知识,强化学生对知识的理解,培养学生的解题能力。

(五)探索与发现

利用教材P53“做一做”的第2小题和P55的“探究活动”,来对旋转变换、轴对称变换及平移变换在形状、大小和方向等方面做个比较和总结。教学时可鼓励学生进行小组讨论、利用学具自主探索、合作交流来完成问题。这一环节的内容是在时间允许的情况下可以完成。

(六)归纳小结

1、教师组织学生总结,提出设问:“通过本课的学习与探索,同学们学会了什么?发现了什么?感受到了什么?得到了哪些收获?”以谈话交流形式重点小结以下内容:

(1)旋转变换的概念及其内涵。

(2)旋转变换的性质

(3)旋转变换的三要素。

(4)认识到数学知蚀源于生活,并应用于实践。

这一环节的目的是让学生对这节课的内容重新梳理一遍,加深印象,得以理解和巩固。

2、作业布置。

可根据学生的不同情况分为巩固性作业和拓展性作业。

16、七年级数学下册简单的轴对称图形说课稿

一、把握课标说教材

(一)教材所处的地位及作用

本节课是在学生感受了现实生活中的轴对称图形,探索并体验了轴对称图形的特征的基础上进一步认识简单的轴对称图形——线段,主要学习线段的轴对称性,线段的垂直平分线定义及性质。既是对前面知识的深化和应用,又是后续画图形的对称轴和画轴对称图形的基础,还是今后探究等腰三角形、矩形、菱形、正方形等轴对称图形的性质的预备知识和方法指导。因此处于非常重要的位置,起到承前启后的作用。

(二)教学目标

1、知识与能力

知道线段是轴对称图形;掌握线段的垂直平分线定义及性质,学会应用线段垂直平分线的性质进行简单的计算和说理。

2、过程与方法

经历探索线段垂直平分线定义及性质的过程,体会数学活动充满了探索性和挑战性。

3、情感态度与价值观

经过自主探索和合作交流,敢于发表自己的观点,品尝发现的快乐,感受轴对称的对称美。

(三)教学重点和难点

由于线段是组成几何图形的基本元素,线段的垂直平分线定义又是画图形的对称轴和画轴对称图形的基础,加之线段的垂直平分线性质在几何图形和实践问题中应用较为广泛,因此本节课的教学重点是线段的垂直平分线定义及性质。难点是运用线段垂直平分线性质解决实践问题。

突破方式:

1、通过设计问题情境,激发学生求知欲。

2、让学生亲自动手操作,参与知识形成过程,深化对知识的理解。

二、促进发展说教法

著名教育家布鲁纳说“探索是数学教学的生命线”,我结合学生心理发展特点及认识水平,充分体现教师是教学活动的组织者,引导者,合作者,学生才是学习的主体。基本的教学程序是:由“创设情境——活动探究——实践应用——课堂小结”四部分组成。在此程序中我将采用:情景与直观演示教学法,讨论法、练习法。

三、提高能力说学法

我将遵循学生的认知规律,充分发挥教师引导和学生认识活动的主体作用,通过多媒体演示、实物图例等实践活动充分调动学生积极性,给以学生动手、动脑的机会,变被动学习为主动学习,启导学生通过猜想、实验、讨论、分析出线段的对称轴特征,以及线段的对称轴上的点到线段两端点距离相等这一性质,以求学生通过实践活动深化知识,进一步理解所学知识。

四、优化组合说流程

课前准备:透明纸片、三角板、量角器、导学案

(一)创设情境,导入新课

1、欣赏:多媒体导入具有实际意义的轴对称现象。

2、体验:用纸片展示线段,观察它是不是轴对称图形。

(设计意图:通过对图片的展示,吸引学生的注意力,帮助学生复习旧知识,为本节课的知识做铺垫。同时也让学生的思维由静止状态转入活动状态。)

(二) 教师引导,探究新知

自主探究:线段的垂直平分线概念(全体活动)

1、动手操作:设计方案找线段的另一条对称轴。

2、讨论:观察对称轴与线段的位置关系。

3、明晰(多媒体展示学生们的发现):线段的垂直平分线概念。

引导探究:探究线段的`垂直平分线性质(小组活动)。

1、动手操作(投影展示步骤):

(1)在线段AB的垂直平分线CD上任取一点P;(2)连接PA,PB。

2、讨论:在操作过程中,比较线段PA,PB。

3、明晰(多媒体展示学生们的发现):线段的垂直平分线性质。

(设计意图:本环节发挥教师的主导作用,设计困难,以疑促思,引导学生积极参加到探讨线段的垂直平分线定义及性质这一活动中来,锻炼学生主动学习的习惯,培养学生观察、想象思维和概括能力。)

(三)讲练结合,巩固提高

第一组:巩固训练

填空:

1、如图,若AO BO,EF AB,则直线EF是线段 的垂直平分线。

2、如图,已知直线CD垂直平分AB,则 _____ 。

3、如图,△ABC中,AD垂直平分边BC,AB=5,那么AC= 。

(设计意图:这三道小题都是对刚学过的重点知识进行数学化语言的组织,让学生加深印象,体会数学语言的严谨性。)

第二组:强化训练

例1:如右图所示,△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E、D,BE=6,求△BCE的周长。

变式演习:

1、已知:如图,在△ABC中,BC边上的垂直平分线DE交BC于点D,交 AC于点E,AC=8 cm,△ABE的周长是14 cm,求:AB的长。

2、如右图所示,直线MN和DE分别是线段 AB、BC的垂直平分线,它们交于P点,请问PA和 PC相等吗?为什么?

解:连接BP

∵ MN垂直平分线段AB( 已知 )

∴ AP=BP ( )

(设计意图:意在让学生掌握本节课的知识和训练解题格式。)

第三组:拓展延伸

1、上罗中学和上罗一小计划在村公路上共同设一个心理咨询 中心,如图,A处是上罗中学,B处是上罗一小,直线L表示村公路,应在村公路L的何处设心理咨询中心,才能使心理咨询中心P到两校的长度相等?

2、随着我国经济、教育的发展,学前教育已经纳入九年制义务教育范围,为了让小朋友们能更方便的上学,上罗镇计划以三个村为一个范围建公立幼儿园,如图,A、B、C表示三个村的地理位置,问:幼儿园建在何处,才能使得到三个村的距离相等?请你作出幼儿园的位置(用P表示)。

(设计意图:这组题是针对本节课的难点设计的,设计为与学生们生活紧密相关的实践问题,让学生们自己当一会设计师,体验数学知识的应用价值。本组题的教法是:组内讨论,各组推选一名上台展示。)

(总设计意图:三组题型,从三个面,全方位的覆盖了本节课的重难点,意在让学生主动探索、讨论、提出质疑,并解决问题。教师从旁参与讨论,有针对性的启发和指导,鼓励他们提出疑问,鼓励他们团结合作,进而培养学生的创新意识与创新能力。)

(四)总结归纳,强化体系

1、引导学生从这节课“学了什么”、“如何学”、“为什么学”这几个方面进行反思。

(设计意图:让学生系统掌握本节课的知识点,培养学生的总结能力,感受数学的应用价值。)

2、作业布置:练习题第2题、习题10。2第3题。

(设计意图:巩固所学知识,强化知识体系。)

五、归纳总结说设计

本节课设计以新课改理念出发,进行教师主导,学生主体教学的探索,让学生去发现问题、解决问题。在探讨的过程中遵循从直观感知到理性认识的认知规律,循序渐进,引导学生深入探究问题的本质,尊重学生的个人体验,在活动中感悟数学知识的价值。

推荐文章 愚人节封信幽默搞笑 超市元旦新年活动方案 四年级第一学期数学教学计划 教学科研的工作总结 花朵的小学作文 《小兵张嘎》有感400字 电影《攀登者》观后感600字 qq三个字另类网名207个

相关说课稿一等奖文章 《椭圆及其标准方程》说课稿一等奖 高中光合作用说课稿一等奖 《时分秒的认识》说课稿一等奖 《游园》说课稿一等奖 《我应该感到自豪才对》课程说课稿一等奖 《香甜的水果》说课稿一等奖 《谈礼貌》说课稿一等奖 《我知我师,我爱我师》说课稿一等奖 《弯道跑》的说课稿一等奖 《双胞胎》说课稿一等奖 金色草地说课稿一等奖 《世界之窗》说课稿一等奖 《一座铜像》说课稿一等奖 《小手拉小手》说课稿一等奖

推荐PPT课件下载 阳江家乡特色ppt 中药的分类ppt 幼儿园大班社会《水》PPT课件 垃圾分类美术ppt 小学三年美术讲课ppt模板 缘事析理学习写得深刻PPT课件 坚持实践与认识提高人生发展能力PPT 环境因素识别培训教材PPT课件 设备安全培训PPT课件